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Introduction

The Solid-state physics 1 course provides a general understanding of a broad range of fundamental
phenomena and properties of solid-state matter.

The course covers the fundamental structural, electronic, vibrational, and spectroscopic properties
of crystals, plus heat and electricity transport.

The main textbook is Kittel’s Introduction to Solid State Physics [1].
We cherry-pick specific topics from Refs. [2, 3, 4].
The present Additional Material collects a few topics&figures either not covered in the suggest

textbooks or simply handy to have and look at.
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CHAPTER 1

Periodic structures and diffraction experiments

1.1. Bravais lattices and crystalline structures
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4 1. PERIODIC STRUCTURES AND DIFFRACTION EXPERIMENTS

Figure 1.1. A
sketch of the 14
Bravais lattices.
According to their
symmetry point
group, they can
be organized into
7 lattice systems,
namely: cubic
(3), tetragonal (2),
hexagonal (1),
orthorhombic (4),
rhombohedral (1),
monoclinic (2), and
triclinic (1).
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Figure 1.2. The hexagonal lattice: a possible choice of primitive vectors a1 = 𝑎x̂,
a2 = 𝑎

2 (x̂ +
√

3ŷ), a3 = 𝑐 ẑ; the parallelepiped cell
∑

𝑖=1,2,3 𝑥𝑖a𝑖 with 0 ≤ 𝑥𝑖 < 1 is a
rhombic right prism with a 60◦ (or 120◦) angle between a1 and a2. The cell volume
𝑉𝑐 =

√
3

2 𝑎2𝑐.
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Figure 1.3. The bcc lattice: the standard primitive vectors a1 = 𝑎
2 (ŷ + ẑ − x̂),

a2 = 𝑎
2 (ẑ + x̂ − ŷ), a3 = 𝑎

2 (x̂ + ŷ − ẑ); the parallelepiped cell
∑

𝑖=1,2,3 𝑥𝑖a𝑖 with
0 ≤ 𝑥𝑖 < 1 is a rhombohedron with edge

√
3

2 𝑎 and angles between adjecent edges
= arccos(−1

3 ) ≃ 109.471◦; and the Wigner-Seitz cell (a truncated octahedron). The
cell volume 𝑉𝑐 =

1
2𝑎

3.
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Figure 1.4. The fcc lattice: the standard primitive vectors a1 = 𝑎
2 (ŷ+ẑ), a2 = 𝑎

2 (ẑ+x̂),
a3 = 𝑎

2 (x̂ + ŷ); the parallelepiped cell
∑

𝑖=1,2,3 𝑥𝑖a𝑖 with 0 ≤ 𝑥𝑖 < 1 is a rhombohedron
with edge 𝑎√

2
and angles between adjecent edges = 60◦; and the Wigner-Seitz cell (a

rhombic dodecahedron). The cell volume 𝑉𝑐 =
1
4𝑎

3.
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1.2. Examples of crystalline structures

Figure 1.5. The diamond
structure consists of two in-
terpenetrating fcc Bravais lat-
tices, displaced along the body
diagonal of the cubic cell by
one quarter of the length of this
diagonal. In other words it is
a fcc lattice with the two-atom
basis 0 and 1

4 (a1 + a2 + a3) =
𝑎
4 (x̂ + ŷ + ẑ). 8 atoms re-
side in each conventional cubic
cell. Four elements (C, Si, Ge,
Sn) crystallize in this structure
with lattice constants 𝑎 = 3.56,
5.43, 5.65, and 6.46 Å, respec-
tively.

Figure 1.6. The zincblend struc-
ture is geometrically identical to the
diamond structure with two chemi-
cally different atoms at the two in-
equivalent basis points in the fcc lat-
tice cell. Common compounds that
crystallize in the zincblend structure
are listed below.
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(b)(a)

Figure 1.7. (a) The sodium chloride structure. (b) The cesium chloride structure.
Small and large balls represent ions of two different types. In the NaCl crystal, the
ions of each kind form interpenetrating fcc lattices: each ion is surrounded by 6 ions
of the other kind. In the CsCl crystal, the ions of each kind form interpenetrating
simple-cubic lattices: each ion is surrounded by 8 ions of the other kind.

1.3. Diffraction: elastic scattering from a crystal

Coherent elastic scattering of “radiation” (X rays or neutrons) from a piece of matter.
Summing coherently the scattered amplitudes at the detector, the total probability for the probing

radiation to scatter from ®𝑘 to ®𝑘′ is proportional to the square modulus of

(1)
∫

𝑒−𝑖
®𝑘 ′·®𝑟 𝑛(®𝑟) 𝑒𝑖®𝑘 ·®𝑟 𝑑3®𝑟 =

∫
𝑒−𝑖(

®𝑘 ′−®𝑘)·®𝑟 𝑛(®𝑟) 𝑑3®𝑟 =
∫

𝑒−𝑖 ®𝑞·®𝑟 𝑛(®𝑟) 𝑑3®𝑟 ∝ 𝐹 [𝑛] ( ®𝑞) = 𝑛̃( ®𝑞).

Here 𝑛̃( ®𝑞) indicates the 3D Fourier transform of the number density of scatterers 𝑛(®𝑟). ®𝑞 = ®𝑘′ − ®𝑘
is the wave vector transferred from the radiation to the sample. Depending on whether the scattering
experiment involves X rays or neutrons, 𝑛(®𝑟) is the number density of electrons or the number density
of nuclear matter, respectively.

The number density of scatterers is

(2) 𝑛(®𝑟) =
∑︁
®𝑅

𝑛cell(®𝑟 − ®𝑅) ≃
∑︁
®𝑅

∑︁
𝑠

𝑛at
𝑠 (®𝑟 − ®𝑑𝑠 − ®𝑅),

where ®𝑅 are the 𝑁cell Bravais-lattice translation of a finite piece of a crystal, and ®𝑑𝑠 are the positions
of the individual atoms in one primitive cell (the basis). The function 𝑛at

𝑠 (®𝑟) is the density of the 𝑠-th
atom in the basis. Depending on whether the experiment is Xray or neutron scattering, 𝑛at

𝑠 (®𝑟) is the
number density of electrons or the number density of nuclear matter, respectively. The last expression
in Eq. (2) is actually exact for the nuclear matter case (neutron scattering). In contrast, the density
distribution of electrons in crystals is only approximately the sum of atomic densities, which explains
the ≃ sign.
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Substitute Eq. (2) into Eq. (1):

𝑛̃( ®𝑞) =
∫
𝑉

𝑒−𝑖 ®𝑞·®𝑟 𝑛(®𝑟) 𝑑3®𝑟 =
∑︁
®𝑅

∑︁
𝑠

∫
𝑉

𝑛at
𝑠 (®𝑟 − ®𝑑𝑠 − ®𝑅) 𝑒−𝑖 ®𝑞·®𝑟 𝑑3®𝑟

=
∑︁
®𝑅

∑︁
𝑠

∫
𝑉

𝑛at
𝑠 (®𝑟′) 𝑒−𝑖 ®𝑞·(®𝑟

′+ ®𝑑𝑠+ ®𝑅) 𝑑3®𝑟′

=
∑︁
®𝑅

𝑒−𝑖 ®𝑞·
®𝑅
∑︁
𝑠

𝑒−𝑖 ®𝑞·
®𝑑𝑠
∫
𝑉

𝑛at
𝑠 (®𝑟′) 𝑒−𝑖 ®𝑞·®𝑟

′
𝑑3®𝑟′

=
∑︁
®𝑅

𝑒−𝑖 ®𝑞·
®𝑅
∑︁
𝑠

𝑒−𝑖 ®𝑞·
®𝑑𝑠
∫

all space
𝑛at
𝑠 (®𝑟) 𝑒−𝑖 ®𝑞·®𝑟 𝑑3®𝑟

=
∑︁
®𝑅

𝑒−𝑖 ®𝑞·
®𝑅

︸     ︷︷     ︸
Bragg

∑︁
𝑠

𝑒−𝑖 ®𝑞·
®𝑑𝑠 𝑓at 𝑠 ( ®𝑞)︸               ︷︷               ︸

structure factor 𝑆( ®𝑞)

(3)

Note that the Bravais-lattice sum identified with “Bragg” in the large-sample limit yields the Bragg
condition:

(4) 𝑛Bravais( ®𝑞) =
∑︁
®𝑅

𝑒−𝑖 ®𝑞·
®𝑅 −−−−−−→

𝑁cell→∞
𝑁cell

∑︁
®𝐺

𝛿 ®𝑞− ®𝐺

that directs all scattered amplitude to directions compatible with the Bragg condition

(5) ®𝑞 = ®𝐺 .

In Eq. (3) we made use of the observation that 𝑛at
𝑠 (®𝑟) is negligibly small for |®𝑟 | > 𝑑, with 𝑑 of the

order of few nanometers. We have also introduced the atomic form factor 𝑓at 𝑠 ( ®𝑞). Since atoms are
spherically symmetric 𝑛at

𝑠 (®𝑟) = 𝑛at
𝑠 (𝑟) (the origin is made coincide with the center of the nucleus), the

atomic form factor is also spherically symmetric, i.e. it depends only on the length of vector ®𝑞. In the
simple and “constructive” demonstration below we assume that 𝜃 is the angle between vectors ®𝑞 and
®𝑟:

𝑓at 𝑠 ( ®𝑞) =
∫

all space
𝑛at
𝑠 (®𝑟) 𝑒−𝑖 ®𝑞·®𝑟 𝑑3®𝑟

= 2𝜋
∫ ∞

0
𝑟2 𝑑𝑟

∫ 1

−1
𝑑 cos 𝜃 𝑛at

𝑠 (𝑟) 𝑒−𝑖 𝑞 𝑟 cos 𝜃

= 2𝜋
∫ ∞

0
𝑟2 𝑑𝑟 𝑛at

𝑠 (𝑟)
1

−𝑖 𝑞 𝑟 (𝑒
−𝑖 𝑞 𝑟 1 − 𝑒−𝑖 𝑞 𝑟 (−1))

= 4𝜋
∫ ∞

0
𝑛at
𝑠 (𝑟)

𝑟

𝑞
sin(𝑞 𝑟) 𝑑𝑟 = 𝑓at 𝑠 (𝑞) .(6)

Using this result (6), students are invited to solve problem 6 of Kittel’s Chapter 2 (evaluation of
the atomic form factor of atomic H).

Note that Eq. (6) implies the following observations:
• 𝑓at 𝑠 (𝑞) is a real function;
• for 𝑞 → 0, 𝑓at 𝑠 (𝑞) → 𝑓at 𝑠 (0) = 4𝜋

∫ ∞
0 𝑛at

𝑠 (𝑟) 𝑟2 𝑑𝑟 , the total number of scatterers in a 𝑠-
labeled atom. For X-ray scattering, this is the number of electrons 𝑍 (or slightly more or less
if the 𝑠 atom is ionized). For neutron scattering, 𝑓at 𝑠 (0) reflects the elastic neutron-nucleus
cross section at low energy.
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In Eq. (3) the quantity identified as the structure factor 𝑆( ®𝑞) is the only part of the scattering
amplitude which is affected by the positions of the atoms in the primitive cell. Note that in the special
case of a monoatomic crystal, the

∑
𝑠 disappears, and 𝑆( ®𝑞) ≡ 𝑓at 1( | ®𝑞 |).

The scattering intensity

(7) 𝐼 ( ®𝑞) ∝ |𝑛̃( ®𝑞) |2 = |𝑛̃Bravais( ®𝑞) |2 |𝑆( ®𝑞) |2

is organized in Bragg peaks at directions uniquely determined by the Bravais lattice of the crystal. In
these directions, the scattered intensities are dominated by a common 𝑁2

cell factor from the Bragg term,
but are also modulated by the |𝑆( ®𝑞) |2 term. From the intensities of the Bragg peaks, crystallographers
reconstruct the positions ®𝑑𝑠 of the atoms in the cell. Note however that this reconstruction is not a
straightforward inversion of the Fourier transform, because (i) just a finite number of amplitudes

���𝑆( ®𝐺)
���

can be derived from the experimental intensities, at ®𝑞 = ®𝐺 only, and (ii) no experimental information
of the phase of the complex structure factor 𝑆( ®𝑞) is available. In practice crystallographers start from
a first guess of the positions ®𝑑𝑠, followed by their iterative adjustments to tune the corresponding 𝑆( ®𝑞)
in order to best fit the experimental scattered intensities.

1.3.1. A note on radiation coherence. What is 𝑁cell mentioned below Eq. (2) and in Eq. (4)?
Formally, the number of cells in the crystal.
In practice, the answer is not so straightforward.
The derivation linking the scattered amplitude to the Fourier transform of the density works in the

assumptions of:
• a periodic crystal, whose only deviation from ideality is in consisting of a finite number 𝑁cell

of primitive cells;
• perfect plane-wave incident radiation.

The first assumption is practically valid for a perfect monocrystalline sample. It is certainly
violated by polycrystalline materials or powder samples. In those cases, 𝑁cell represents the average
number of cells in each microcrystal inside the polycrystal, or in each powder grain.

The second assumption regards the coherence of the incident radiation. No real radiation source
generates perfect plane waves. Every radiation (or matter, in the case of neutrons) beam is perfect
and monochromatic to a certain degree. A width in photon energy reflects a mixture of slightly
different wave vectors ®𝑘 . The corresponding photons are generated with random initial phases, and
slightly different random propagation directions. In real space this randomness of the radiation field
translates in a wave that can be seen as a distortion of a plane wave. If one could examine a small
region in space, the electic field (X rays) or the Schrödinger wave function (neutrons) looks practically
indistinguishable from a plane wave corresponding to the dominant ®𝑘 . However over a more extended
region, the wave starts to deform significantly. Eventually at two far-enough points, the relative phase
of the oscillating field becomes completely random. Coherence is lost. Waves scattered by portions of
matter at such large distance cannot interfere any more. The Fourier analysis cannot be applied, and
the intensity (rather than the amplitude) of the scattered waves simply sum at the detector. This is what
happens when two lamps are turned on at two spots in a room: no coherence, no interference, just the
sum of the radiation intensities. The X-rays and neutron beams used in diffractometry are tailored in
such a way to produce a radiation as monochromatic and as coherent as possible, but eventually they
only provide a finite (and not especially large) coherence volume 𝑉coher, inside which relative phases
are locked and the fields behave as plane waves to a very good approximation.

Given this practical experimental condition, it is clear that 𝑁cell cannot exceed𝑉coher/𝑉𝑐 where𝑉𝑐 is
the volume of a primitive cell of the crystal under investigation. Therefore in practice the correct value
of 𝑁cell entering the theorical relations discussed above is the smaller between the average number
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all allowed fcc spots

(effectively cubic of side a/2)

a

only even−l  spotsi

Figure 1.8. Compared powder diffraction peaks of KCl and KBr. Note that the Miller
indexes are given relative to the conventional cubic cell of side 𝑎

of cells in each (micro)crystal/grain and the number 𝑉coher/𝑉𝑐 or unit cells in a radiation coherence
volume.



CHAPTER 2

The adiabatic potential and the vibrational dynamics

2.1. The adiabatic separation

For a crystal, as for any piece of matter, the Hamiltonian operator of the system is:

(8) 𝐻̂ = 𝑇𝑛 + 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑛 + 𝑉̂𝑛𝑛

with:

𝑇𝑛 = −ℏ
2

2

𝑁𝑛∑︁
𝑖=1

Δ ®𝑅𝑖

𝑀𝑖

kinetic energy of the nuclei

𝑇𝑒 = − ℏ2

2𝑚𝑒

𝑁𝑒∑︁
𝑖=1

Δ®𝑟𝑖 kinetic energy of the electrons

𝑉̂𝑒𝑒 =
𝑒2

2

𝑁𝑒∑︁
𝑖≠ 𝑗=1

1
|®𝑟𝑖 − ®𝑟 𝑗 |

electron-electron repulsion energy

𝑉̂𝑛𝑛 =
𝑒2

2

𝑁𝑛∑︁
𝑖≠ 𝑗=1

𝑍𝑖𝑍 𝑗

| ®𝑅𝑖 − ®𝑅 𝑗 |
nuclei-nuclei repulsion energy

𝑉̂𝑒𝑛 = −𝑒2
𝑁𝑒∑︁
𝑖=1

𝑁𝑛∑︁
𝑗=1

𝑍 𝑗

|®𝑟𝑖 − ®𝑅 𝑗 |
electron-nuclei attraction energy

where 𝑒2 is a shorthand for 𝑞2
𝑒/(4𝜋𝜖0). Solution of the full eigenvalue equation:

(9) 𝐻̂ Ψ(𝑟, 𝑅) = 𝐸 Ψ(𝑟, 𝑅)
would lead to complete knowledge of the properties of the system. As a first step, one could fix a
configuration 𝑅 of the nuclei and focus on the electronic eigenvalue equation:

(10) 𝐻̂
(𝑅)
𝑒 Ψ(𝑒) (𝑟, 𝑅) = 𝑉ad(𝑅) Ψ(𝑒) (𝑟, 𝑅)

where

(11) 𝐻̂
(𝑅)
𝑒 = 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ (𝑅)

𝑒𝑛 + 𝑉̂ (𝑅)
𝑛𝑛

is the electronic Hamiltonian and Ψ(𝑒) (𝑟, 𝑅) is a candidate electronic eigenfunction. Both 𝐻̂
(𝑅)
𝑒 and

Ψ(𝑒) (𝑟, 𝑅) depend parametrically on the nuclear configuration 𝑅. The solution of (10) is complicated
by the interaction term 𝑉̂𝑒𝑒. For the moment, suppose that one could obtain an orthonormal complete
set of electronic eigenfunctions:

(12) 𝐻̂
(𝑅)
𝑒 Ψ

(𝑒)
𝑘

(𝑟, 𝑅) = 𝑉ad 𝑘 (𝑅) Ψ(𝑒)
𝑘

(𝑟, 𝑅) .
And that this task can be accomplished for every nuclear configuration 𝑅. Then, since for every fixed
nuclear configuration 𝑅 a generic electronic wavefunction Ψ(𝑒) (𝑟, 𝑅) lies in a space spanned by the

11
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eigenfunctions of Eq. (12), we can expand the total:

(13) Ψ(𝑟, 𝑅) =
∑︁
𝑘

Φ𝑘 (𝑅) Ψ(𝑒)
𝑘

(𝑟, 𝑅)

The decomposition (13) holds for a generic wavefunction Ψ(𝑟, 𝑅), which solves the global eigenvalue
problem (9) if and only if the functions Φ𝑘 (𝑅) satisfy the conditions, which can be obtained by
substituting the expansion (13) into Eq. (9):

(14)
∑︁
𝑘

(
𝑇𝑛 + 𝐻̂

(𝑅)
𝑒 − 𝐸

) [
Φ𝑘 (𝑅) Ψ(𝑒)

𝑘
(𝑟, 𝑅)

]
= 0 .

Recalling (12) and the well-known property of the Laplacian operator:

(15) Δ( 𝑓 𝑔) = (Δ 𝑓 ) 𝑔 + 2 (∇ 𝑓 ) · (∇𝑔) + 𝑓 (Δ𝑔)
we rewrite Eq. (14) as∑︁

𝑘

(
𝑇𝑛 +𝑉ad 𝑘 (𝑅) − 𝐸

) [
Φ𝑘 (𝑅)

]
Ψ

(𝑒)
𝑘

(𝑟, 𝑅) +

− ℏ2

2

∑︁
𝑘

Φ𝑘 (𝑅) Δ𝑅Ψ
(𝑒)
𝑘

(𝑟, 𝑅) − ℏ2
∑︁
𝑘

[
∇𝑅Ψ

(𝑒)
𝑘

(𝑟, 𝑅)
]
· ∇𝑅 [Φ𝑘 (𝑅)] = 0 .

(16)

where we introduced the shorthand∇𝑅, a 3𝑁𝑛-dimensional weighted gradient (∇𝑅) 𝑗𝛼 ≡ 𝑀
−1/2
𝑗

(
®∇𝑅 𝑗

)
𝛼
.

and the corresponding Laplacian Δ𝑅 ≡ ∇2
𝑅
. Taking the inner product with a given electronic eigen-

function Ψ
(𝑒)
𝑙

(𝑟, 𝑅): [
𝑇𝑛 +𝑉ad 𝑙 (𝑅) − 𝐸

]
Φ𝑙 (𝑅)+

− ℏ2

2𝑀

∑︁
𝑘

𝜏
(2)
𝑙𝑘

(𝑅)Φ𝑘 (𝑅) −
ℏ2

𝑀

∑︁
𝑘

𝜏
(1)
𝑙𝑘

· ∇𝑅 Φ𝑘 (𝑅) = 0
(17)

where

𝜏
(2)
𝑙𝑘

(𝑅) =
∫

𝑑𝑟 Ψ
(𝑒)∗
𝑙

(𝑟, 𝑅)Δ𝑅Ψ
(𝑒)
𝑘

(𝑟, 𝑅)

𝜏
(1)
𝑙𝑘

(𝑅) =
∫

𝑑𝑟 Ψ
(𝑒)∗
𝑙

(𝑟, 𝑅)∇𝑅Ψ
(𝑒)
𝑘

(𝑟, 𝑅)
(18)

The off-diagonal matrix elements of 𝜏(2) and 𝜏(1) are responsible for the couplings between different
electronic states 𝑙 and 𝑘 .

2.1.1. The adiabatic approximation. The adiabatic approximation implies neglecting precisely
the non-adiabatic terms in the lower row of equation (17). When we neglect them, the different
electronic states drive the nuclear dynamics “one at a time”. At this point, one can fix an electronic
eigenstate 𝑙 (usually the electronic ground state), and obtain the nuclear wave function Φ𝑙 (𝑅) which
is an eigenfunction of the operator

𝑇𝑛 +𝑉ad 𝑙 (𝑅) .
Compared to the general Eq. (13), in the adiabatic approximation the overall eigenfunction Ψ(𝑟, 𝑅)

involves a single electronic wavefunction:

(19) Ψ(𝑟, 𝑅) = Φ𝑙 (𝑅) Ψ(𝑒)
𝑙

(𝑟, 𝑅) .
This is a wonderful simplification, which allows us to consider the electronic motion to follow
“adiabatically” the instantaneous positions 𝑅 of the nuclei, without worrying of the mixing of different
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electronic states. Those who worry that these couplings and mixings might be relevant can always
solve the full Eq. (17) taking them into account.

Here we rather address the problem of obtaining 𝑉ad 𝑙 (𝑅), which is the fundamental ingredient
driving the motion of the nuclei. Determining 𝑉ad 𝑙 (𝑅) requires solving the electronic equation (10).
Due to the electron-electron interaction, this is a rather formidable problem, which can be solved exactly
only in remarkably few very ideal conditions, none of which relevant for solids. We will describe
approximate approaches to this problem: the Hartree-Fock method and the density-functional theory.
In this chapter we focus on the total adiabatic energy 𝑉ad 𝑙 (𝑅) and its implications for the motion of
nuclei. We will then come back later on to the electronic implications of the solutions for the electrons.

2.2. The many-electron problem

Recall that the electronic equation, at fixed 𝑅 involves the following 4 terms:

(20) 𝐻̂
(𝑅)
𝑒 = 𝑇𝑒 + 𝑉̂ (𝑅)

𝑒𝑛 + 𝑉̂ (𝑅)
𝑛𝑛 + 𝑉̂𝑒𝑒 .

The electronic problem can be seen as a system of 𝑁𝑒 interacting electrons subject to some “external”
field. In practice this external field is the Coulomb attraction 𝑉̂

(𝑅)
𝑒𝑛 due to the 𝑁𝑛 nuclei. Seen from an

electron at position ®𝑟 this external attraction energy is

(21) 𝑉ext(®𝑟) = −𝑒2
𝑁𝑛∑︁
𝑗=1

𝑍 𝑗

|®𝑟 − ®𝑅 𝑗 |
.

From the point of view of the electronic equation, the term 𝑉̂
(𝑅)
𝑛𝑛 is a trivial constant: it is a huge

positive energy, which however does not influence the motion of the electrons, so we will temporarily
set it aside. The electron-electron Coulomb repulsion 𝑉̂𝑒𝑒 is precisely the responsible for the electronic
correlations which make the electronic problem complicate, and call for approximations.

In the following for each electron we introduce a position-spin cumulative coordinate: 𝑤 𝑗 =

(®𝑟 𝑗 , 𝜎𝑗 ).
If there was no e-e interaction term 𝑉̂𝑒𝑒, the eigenfunctions of 𝐻̂ (𝑅)

𝑒 would be Slater determinants
of the form:

(22) Ψ(𝑒) (𝑤1 . . . 𝑤𝑁𝑒
) = 1

√
𝑁𝑒!

������ 𝜙1(𝑤1) . . . 𝜙𝑁𝑒
(𝑤1)

. . . . . . . . .

𝜙1(𝑤𝑁𝑒
) . . . 𝜙𝑁𝑒

(𝑤𝑁𝑒
)

������ .
The single-particle orbitals 𝜙𝑖 (𝑤) can be, e.g. eigenfunctions of the single-particle Hamiltonian

(23) 𝐻̂0 𝑗 = − ℏ2

2𝑚𝑒

Δ®𝑟 𝑗 +𝑉ext(®𝑟 𝑗 )

(the constant 𝑉̂ (𝑅)
𝑛𝑛 was omitted here for brevity).

To address the many body-electronic problem there are two main classes of techniques:
• Single-electron methods: Hartree-Fock (HF) and (most approximate) density-functional

theory (DFT).
• Intrinsically many-body methods: configuration interaction (CI) and Monte Carlo (MC).

Here we’ll focus on the single-electron methods.

2.3. The Hartree-Fock method

The HF theory moves from the assumption that the ground-state wave function of the interacting
electron system can be approximated with a Slater determinant, Eq. (22), constructed with suitably
optimized single-particle orbitals.
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To identify the best approximation for the actual ground-state wave function in the class of Slater
determinants, it is necessary to express the expectation value of 𝐻̂

(𝑅)
𝑒 on Ψ(𝑒) (𝑤1 . . . 𝑤𝑁𝑒

) and to
minimize it with respect to the involved functions 𝜙𝑖. It is convenient to assume that the single-
electron states 𝜙𝑖 are orthonormal. All of the (infinitely many) 𝜙𝑖’s form a complete set (i.e. a basis)
for the one-electron Hilbert space. 𝑁𝑒 of them, typically those with the 𝑁𝑒 lowest single-electron
energies, are involved in the formation of the Slater determinant.

The quantity that we need to optimize is the following average electronic energy:

(24) 𝐸var = ⟨Ψ(𝑒) |𝐻̂ (𝑅)
𝑒 |Ψ(𝑒)⟩ =

∫
𝑑𝑤1 . . . 𝑑𝑤𝑁𝑒

Ψ(𝑒)∗(𝑤1 . . . 𝑤𝑁𝑒
)𝐻̂ (𝑅)

𝑒 Ψ(𝑒) (𝑤1 . . . 𝑤𝑁𝑒
),

with the natural notation
∫
𝑑𝑤 𝑗 ≡

∫
𝑑3®𝑟 𝑗

∑
𝜎𝑗

.
𝐸var is the sum of the quantum averages of two operators: a 1-electron operator 𝑂 (1) , namely

(25) 𝐻̂0 =

𝑁𝑒∑︁
𝑗=1

𝐻̂0 𝑗 ,

– see Eq. (23), plus a 2-electron operator 𝑂 (2) , namely

(26) 𝑉̂𝑒𝑒 =
1
2

𝑁𝑒∑︁
𝑙=1

∑︁
𝑙′≠𝑙

𝑉̂C 𝑙,𝑙′ .

Here the Coulomb 2-body interaction between electrons 𝑙 and 𝑙′ is

(27) 𝑉̂C 𝑙,𝑙′ =
𝑒2

|®𝑟𝑙 − ®𝑟𝑙′ |
1spin 𝑙 1spin 𝑙′ ,

where 1spin 𝑙 is the identity in the spin space of the 𝑙-th electron. This identity, sometimes left implicit,
is due to the Coulomb repulsion being an orbital operator, not affecting the electrons’ spins.

We will find that the 1-electron operator generates 𝑁𝑒 individual contributions ⟨𝜙𝑖 |𝐻̂0 |𝜙𝑖⟩; the
2-electron operator generates 𝑁2

𝑒 contributions. Let us compute the two terms separately.
For the 𝑂 (1):

⟨Ψ(𝑒) |𝑂 (1) |Ψ(𝑒)⟩ = 1
𝑁𝑒!

∑︁
𝑃

∑︁
𝑃′

(−1)𝑃+𝑃′ ∑︁
𝑗

⟨𝜙𝑃1 |𝜙𝑃′
1
⟩ ⟨𝜙𝑃2 |𝜙𝑃′

2
⟩ . . . ⟨𝜙𝑃 𝑗

|𝑂 (1)
𝑗
|𝜙𝑃′

𝑗
⟩ . . . ⟨𝜙𝑃𝑁𝑒

|𝜙𝑃′
𝑁𝑒
⟩

=
1
𝑁𝑒!

∑︁
𝑃

∑︁
𝑃′

(−1)𝑃+𝑃′ ∑︁
𝑗

𝛿𝑃1,𝑃
′
1
𝛿𝑃2,𝑃

′
2
. . . ⟨𝜙𝑃 𝑗

|𝑂 (1)
𝑗
|𝜙𝑃′

𝑗
⟩ . . . 𝛿𝑃𝑁𝑒 ,𝑃

′
𝑁𝑒

(28)

=
1
𝑁𝑒!

∑︁
𝑃

∑︁
𝑗

⟨𝜙𝑃 𝑗
|𝑂 (1)

𝑗
|𝜙𝑃 𝑗

⟩ = 1
𝑁𝑒

𝑁𝑒∑︁
𝑙=1

∑︁
𝑗

⟨𝜙𝑙 |𝑂 (1)
𝑗
|𝜙𝑙⟩ =

𝑁𝑒∑︁
𝑙=1

⟨𝜙𝑙 |𝑂 (1)
1 |𝜙𝑙⟩ .

Here we used
• the orthornormality of the set of single-electron wavefunctions ⟨𝜙𝑘 |𝜙𝑘 ′⟩ = 𝛿𝑘𝑘 ′ ;
• the fact that two permutations 𝑃 and 𝑃′ with 𝑁𝑒 − 1 equal indexes must necessarily coincide;
• the fact that the (𝑁𝑒 − 1)! permutations of the indexes different from 𝑗 do not affect the

summed quantity;
• the possibility to re-name the permutated index 𝑙 ≡ 𝑃 𝑗 , which just takes the values 1 . . . 𝑁𝑒;
• the fact that the index 𝑗 just labels a mute integration variable: the results of the integration

do not depend on whether we call that variable 𝑤1 or 𝑤2 or any other of them.
The conclusion of this calculation is that the average value of any𝑂 (1) operator on a Slater determinant
is just the sum of the averages of the operator itself on the 𝑁𝑒 single-particle states composing the
Slater determinant.
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Let us come now to the average of 𝑂 (2):

⟨Ψ(𝑒) |𝑂 (2) |Ψ(𝑒)⟩ = 1
𝑁𝑒!

∑︁
𝑃

∑︁
𝑃′

(−1)𝑃+𝑃′ 1
2

∑︁
𝑗

∑︁
𝑗 ′≠ 𝑗

⟨𝜙𝑃1 |𝜙𝑃′
1
⟩︸     ︷︷     ︸

𝛿𝑃1 ,𝑃
′
1

. . .︸︷︷︸
no 𝑗 , 𝑗 ′

⟨𝜙𝑃𝑁𝑒
|𝜙𝑃′

𝑁𝑒
⟩︸         ︷︷         ︸

𝛿𝑃𝑁𝑒
,𝑃′

𝑁𝑒

⟨𝜙𝑃 𝑗
| ⟨𝜙𝑃 𝑗′ |𝑂

(2)
𝑗 𝑗 ′ |𝜙𝑃′

𝑗
⟩ |𝜙𝑃′

𝑗′
⟩

=
1
𝑁𝑒!

∑︁
𝑃

1
2

∑︁
𝑗

∑︁
𝑗 ′≠ 𝑗

(
⟨𝜙𝑃 𝑗

| ⟨𝜙𝑃 𝑗′ |𝑂
(2)
𝑗 𝑗 ′ |𝜙𝑃 𝑗

⟩ |𝜙𝑃 𝑗′ ⟩ − ⟨𝜙𝑃 𝑗
| ⟨𝜙𝑃 𝑗′ |𝑂

(2)
𝑗 𝑗 ′ |𝜙𝑃 𝑗′ ⟩ |𝜙𝑃 𝑗

⟩
)

=
1

𝑁𝑒 (𝑁𝑒 − 1)
∑︁
𝑙

∑︁
𝑙′≠𝑙

1
2

∑︁
𝑗

∑︁
𝑗 ′≠ 𝑗

(
⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)

𝑗 𝑗 ′ |𝜙𝑙⟩ |𝜙𝑙′⟩ − ⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)
𝑗 𝑗 ′ |𝜙𝑙′⟩ |𝜙𝑙⟩

)
(29)

=
1
2

∑︁
𝑙

∑︁
𝑙′≠𝑙

(
⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)

12 |𝜙𝑙⟩ |𝜙𝑙′⟩ − ⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)
12 |𝜙𝑙′⟩ |𝜙𝑙⟩

)
=

1
2

∑︁
𝑙

∑︁
𝑙′

(
⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)

12 |𝜙𝑙⟩ |𝜙𝑙′⟩ − ⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)
12 |𝜙𝑙′⟩ |𝜙𝑙⟩

)
Observations:

• we use the orthornormality of the set of single-particle wavefunctions;
• two permutations 𝑃 and 𝑃′ with 𝑁𝑒 − 2 equal indexes either coincide or have the two non-

coincident indexes swapped; in the first case the parity sign (−1)𝑃+𝑃′
= 1, in the second case

(−1)𝑃+𝑃′
= −1;

• the (𝑁𝑒 − 2)! permutations of the indexes different from 𝑗 and 𝑗 ′ do not affect the summed
quantity;

• we re-name the permuted indexes 𝑙 ≡ 𝑃 𝑗 𝑙
′ ≡ 𝑃 𝑗 ′ , which must take different values;

• indexes 𝑗 and 𝑗 ′ just label two mute integration variables 𝑤 𝑗 and 𝑤 𝑗 ′ : the results of the
integration do not depend on the names of these variables;

• the condition 𝑙′ ≠ 𝑙 can be removed, because its removal adds equal unphysical terms before
and after the minus sign. These terms cancel anyway, and the overall result remains the same.

The conclusion of this calculation is that on a a Slater determinant the average value of any 𝑂 (2)

operator involves two terms: a Hartree term

(30)
1
2

∑︁
𝑙,𝑙′

⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)
12 |𝜙𝑙⟩ |𝜙𝑙′⟩

and a Fock term

(31) −1
2

∑︁
𝑙,𝑙′

⟨𝜙𝑙 | ⟨𝜙𝑙′ |𝑂 (2)
12 |𝜙𝑙′⟩ |𝜙𝑙⟩ .

Each of them involves the summation of 𝑁2
𝑒 terms obtained by applying the two body-operator on all

possible pairs resulting from the 𝑁𝑒 single-particle states composing the Slater determinant.
We can now use these general results to compute the average energy that the HF method purposes

to minimize:
𝐸var = ⟨Ψ(𝑒) |𝐻̂0 |Ψ(𝑒)⟩ + ⟨Ψ(𝑒) |𝑉̂𝑒𝑒 |Ψ(𝑒)⟩

=
∑︁
𝑙

⟨𝜙𝑙 |𝐻̂0 1 |𝜙𝑙⟩ +
1
2

∑︁
𝑙,𝑙′

(
⟨𝜙𝑙 | ⟨𝜙𝑙′ | 𝑉̂C 1,2 |𝜙𝑙⟩ |𝜙𝑙′⟩ − ⟨𝜙𝑙 | ⟨𝜙𝑙′ | 𝑉̂C 1,2 |𝜙𝑙′⟩ |𝜙𝑙⟩

)
,(32)

Observations on Eq. (32):
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(1) The Coulomb operator in the Hartree term finds the same pair of bras and kets at both sides,
in the same order. Therefore, the spin identities 1spin of Eq. (27) are automatically satisfied
there, regardless of the two electrons having the same or different spin wavefunctions.

(2) On the contrary, 1spin affects the Fock term, setting to 0 all terms which have 𝜎𝑙 ≠ 𝜎𝑙′ .
Accordingly, the more electrons have the same spin component, the more nonvanishing
terms the Fock sum has. Since the Fock term is a negative correction to the positive Hartree
term, states with several electrons with the same spin component (and accordingly large total
spin) have more nonzero Fock terms and are favored energetically against states with better
spin compensation. This phenomenon is called spin exchange, and it is at the origin of
magnetism in atoms, molecules, nanoparticles, and solids.

2.3.1. The electron density. Before minimizing Eq. (32), we make a short digression on the
electrons density. The density operator is defined as

(33) 𝑛̂(®𝑟) =
𝑁𝑒∑︁
𝑗=1

𝛿

(
®̂𝑟 𝑗 − ®𝑟

)
1spin 𝑗 .

Here ®̂𝑟 𝑗 is the position operators of electron 𝑗 . ®𝑟 is a fixed (classical) vector in the 3D space,
indentifying the place where we wish to measure the number density. The spin identity emphasizes
the fact that the density gives purely positional informations.

It is useful to introduce the average of 𝑛̂(®𝑟) over the quantum state of the system:

(34) 𝑛(®𝑟) = ⟨Ψ(𝑒) |𝑛̂(®𝑟) |Ψ(𝑒)⟩ .

This average density is usually simply referred to as the “electron density at position ®𝑟”. 𝑛(®𝑟) is a
ordinary real function of three variables. Its physical dimension is [length]−3.

Clearly, this density can be computed on any many-body state of 𝑁𝑒 electrons.
Now that we are dealing with the HF method, we compute 𝑛(®𝑟) for the special case of a Slater-

determinant state. The main observation is that 𝑛̂(®𝑟) is a one-body operator, as it is clear from its
definition (33). Therefore, using the result of Eq. (28):
(35)
𝑛(®𝑟) =

∑︁
𝑘

⟨𝜙𝑘 |𝛿( ®̂𝑟1 − ®𝑟) |𝜙𝑘⟩ =
∑︁
𝑘

∫
𝑑3®𝑟1

∑︁
𝜎1

𝜙∗𝑘 (®𝑟1, 𝜎1)𝛿(®𝑟1 − ®𝑟)𝜙𝑘 (®𝑟1, 𝜎1) =
∑︁
𝑘

∑︁
𝜎

|𝜙𝑘 (®𝑟, 𝜎) |2.

2.3.2. The variational energy in terms of 𝑛(®𝑟). Going back to the HF calculation, two of the
terms in the variational energy can be expressed as functions of the density: the interaction with the
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external potential, Eq. (21), and the Hartree term:

𝐸var =
∑︁
𝑙

⟨𝜙𝑙 | −
ℏ2

2𝑚𝑒

Δ®𝑟 |𝜙𝑙⟩ +
∑︁
𝑙

∑︁
𝜎

∫
𝑑3®𝑟1 𝜙

∗
𝑙 (®𝑟1, 𝜎)𝑉ext(®𝑟1)𝜙𝑙 (®𝑟1, 𝜎)

+ 1
2

∑︁
𝑙,𝑙′

∑︁
𝜎1

∫
𝑑3®𝑟1

∑︁
𝜎2

∫
𝑑3®𝑟2 𝜙

∗
𝑙 (®𝑟1, 𝜎1)𝜙∗𝑙′ (®𝑟2, 𝜎2)𝑉̂C 1,2 𝜙𝑙 (®𝑟1, 𝜎1)𝜙𝑙′ (®𝑟2, 𝜎2)

− 1
2

∑︁
𝑙,𝑙′

⟨𝜙𝑙 | ⟨𝜙𝑙′ | 𝑉̂C 1,2 |𝜙𝑙′⟩ |𝜙𝑙⟩

=
∑︁
𝑙

⟨𝜙𝑙 | −
ℏ2

2𝑚𝑒

Δ®𝑟 |𝜙𝑙⟩ +
∫

𝑑3®𝑟1𝑉ext(®𝑟1)
∑︁
𝑙

∑︁
𝜎

|𝜙𝑙 (®𝑟1, 𝜎) |2

+ 1
2

∫
𝑑3®𝑟1

∫
𝑑3®𝑟2

∑︁
𝑙

∑︁
𝜎1

|𝜙𝑙 (®𝑟1, 𝜎1) |2 𝑉̂C 1,2
∑︁
𝑙′

∑︁
𝜎2

|𝜙𝑙′ (®𝑟2, 𝜎2) |2

− 1
2

∑︁
𝑙,𝑙′

⟨𝜙𝑙 | ⟨𝜙𝑙′ | 𝑉̂C 1,2 |𝜙𝑙′⟩ |𝜙𝑙⟩

=
∑︁
𝑙

⟨𝜙𝑙 | −
ℏ2

2𝑚𝑒

Δ®𝑟 |𝜙𝑙⟩ +
∫

𝑑3®𝑟 𝑉ext(®𝑟) 𝑛(®𝑟)(36)

+ 1
2

∫
𝑑3®𝑟1

∫
𝑑3®𝑟2 𝑛(®𝑟1)

𝑒2

|®𝑟1 − ®𝑟2 |
𝑛(®𝑟2) −

1
2

∑︁
𝑙,𝑙′

⟨𝜙𝑙 | ⟨𝜙𝑙′ | 𝑉̂C 1,2 |𝜙𝑙′⟩ |𝜙𝑙⟩

= 𝐸kin [{𝜙 𝑗 }] + 𝐸ext [𝑛] + 𝐸Hartree [𝑛] + 𝐸x [{𝜙 𝑗 }] .

Note that in this form the Hartree term exhibits the classic form of the electrostatic repulsion
energy of a charge distribution 𝑛(®𝑟) with itself. By definition, this is the work needed to pull the
“charge elements” from infinitely far apart against the electric forces that repel them, until the charge
distribution 𝑛(®𝑟) is assembled.

The energy 𝐸var = ⟨Ψ(𝑒) |𝐻̂ (𝑅)
𝑒 |Ψ(𝑒)⟩ must be minimized as a functional of the single-particle

orbitals 𝜙𝑖. Several techniques have been devised to carry out this minimization. For example one can
parameterize the {𝜙 𝑗 } in terms of certain parameters (e.g. the values of the 𝜙 𝑗 (®𝑟) at certain positions
in real space), and then minimize 𝐸var by adjusting these parameters. Here we will rather discuss a
classic formulation of this minimization, in terms of functional derivatives, leading to a differential
equation: the Hartree-Fock equation.

2.3.3. Minimization of the variational energy. We address the minimization of 𝐸var as a func-
tional problem, by means of a functional differentiation, see Appendix A.

Note the extra complication that during the minimization we must make sure that the single-particle
orbitals 𝜙 𝑗 remain orthonormal. This result can be achieved by means of Lagrange multipliers. The
stationary condition for the optimization of 𝐸var is:

(37)
𝛿

𝛿𝜙𝑘 (®𝑟)

[
⟨Ψ(𝑒) |𝐻̂ (𝑅)

𝑒 |Ψ(𝑒)⟩ −
∑︁
𝑖, 𝑗

𝜆𝑖 𝑗
(
⟨𝜙𝑖 |𝜙 𝑗 ⟩ − 𝛿𝑖 𝑗

) ]
= 0

We apply the techniques of functional derivatives. For convenience, we take the derivative of 𝐸var
with respect to 𝜙∗

𝑘
, instead of 𝜙𝑘 . Two of the terms depend on the wavefunctions through the density

𝑛. Given the usual notation 𝑤 = (®𝑟, 𝜎) being the spot where the functional derivative is carried out,
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and 𝑤′ = (®𝑟′, 𝜎′) being the dummy internal variable, we evaluate

(38)
𝛿

𝛿𝜙∗
𝑘
(𝑤) 𝑛(®𝑟

′) = 𝛿

𝛿𝜙∗
𝑘
(𝑤)

∑︁
𝑗

∑︁
𝜎′

𝜙∗𝑗 (𝑤′)𝜙 𝑗 (𝑤′) = 𝛿(®𝑟 − ®𝑟′)𝛿𝜎,𝜎′𝜙𝑘 (𝑤′) .

This result allows us to calculate what we really need through the chain rule:

𝛿

𝛿𝜙∗
𝑘
(𝑤)Φ[𝑛] =

∫
𝑑3®𝑟′

∑︁
𝜎′

[
𝛿

𝛿𝑛(®𝑟′)Φ[𝑛]
]
𝛿𝑛(®𝑟′)
𝛿𝜙∗

𝑘
(𝑤)(39)

=

∫
𝑑3®𝑟′

∑︁
𝜎′

𝛿Φ[𝑛]
𝛿𝑛(®𝑟′) 𝛿(®𝑟 − ®𝑟′)𝛿𝜎,𝜎′𝜙𝑘 (®𝑟′, 𝜎′) = 𝛿Φ[𝑛]

𝛿𝑛(®𝑟) 𝜙𝑘 (𝑤) .

This result allows us to determine the contributions of 𝐸ext [𝑛] and 𝐸Hartree [𝑛].
The external potential gives the simplest derivative:

(40)
𝛿𝐸ext [𝑛]
𝛿𝑛(®𝑟) = 𝑉ext(®𝑟) ,

which generates a term

(41)
𝛿𝐸ext [𝑛]
𝛿𝜙∗

𝑘
(𝑤) = 𝑉ext(®𝑟)𝜙𝑘 (𝑤) [where 𝑤 = (®𝑟, 𝜎)]

in the HF equation. This same result could be easily obtained even by carrying out directly the
functional derivative of the formulation of 𝐸ext in the first line of Eq. (36).

The Hartree term is quadratic in 𝑛, therefore

(42)
𝛿𝐸Hartree [𝑛]

𝛿𝑛(®𝑟) =
1
2

∫
𝑑3®𝑟′

(
𝑒2

|®𝑟 − ®𝑟′| +
𝑒2

|®𝑟′ − ®𝑟 |

)
𝑛(®𝑟′) =

∫
𝑑3®𝑟′ 𝑒2

|®𝑟 − ®𝑟′|𝑛(®𝑟
′) ,

which provides a term

(43)
𝛿𝐸Hartree [𝑛]
𝛿𝜙∗

𝑘
(𝑤) =

∫
𝑑3®𝑟′ 𝑒2

|®𝑟 − ®𝑟′|𝑛(®𝑟
′) 𝜙𝑘 (𝑤) [where 𝑤 = (®𝑟, 𝜎)]

to the HF equation.
The derivation of the kinetic energy is quite straightforward, too. We do not involve the density at

all, and obtain:

𝛿𝐸kin [{𝜙 𝑗 }]
𝛿𝜙∗

𝑘
(𝑤) =

𝛿

𝛿𝜙∗
𝑘
(𝑤)

∑︁
𝑙

⟨𝜙𝑙 | −
ℏ2

2𝑚𝑒

Δ ®𝑟 ′ |𝜙𝑙⟩ =
𝛿

𝛿𝜙∗
𝑘
(𝑤) ⟨𝜙𝑘 | −

ℏ2

2𝑚𝑒

Δ ®𝑟 ′ |𝜙𝑘⟩

=
𝛿

𝛿𝜙∗
𝑘
(𝑤)

∫
𝑑3®𝑟′𝜙∗𝑘 (®𝑟

′, 𝜎)
[
− ℏ2

2𝑚𝑒

Δ ®𝑟 ′

]
𝜙𝑘 (®𝑟′, 𝜎) = − ℏ2

2𝑚𝑒

Δ®𝑟 𝜙𝑘 (𝑤) ,(44)

the kinetic term in the HF equation.
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The Fock contribution is the most intricate one. In the double summation, 𝜙∗
𝑘
(·, ·), alias ⟨𝜙𝑘 |,

appears twice. Therefore two terms arise in the derivative:

𝛿𝐸x [{𝜙 𝑗 }]
𝛿𝜙∗

𝑘
(𝑤) =

𝛿

𝛿𝜙∗
𝑘
(𝑤)

[
−1

2

∑︁
𝑙,𝑙′

⟨𝜙𝑙 | ⟨𝜙𝑙′ | 𝑉̂C 1,2 |𝜙𝑙′⟩ |𝜙𝑙⟩
]

= − 1
2

𝛿

𝛿𝜙∗
𝑘
(𝑤)

∑︁
𝑙,𝑙′∫

𝑑®𝑥1

∫
𝑑®𝑥2

∑︁
𝜎1𝜎2

𝜙∗𝑙 (®𝑥1, 𝜎1)𝜙∗𝑙′ (®𝑥2, 𝜎2)
𝑒2

| ®𝑥1 − ®𝑥2 |
1spin 1 1spin 2𝜙𝑙′ (®𝑥1, 𝜎1)𝜙𝑙 (®𝑥2, 𝜎2)

= − 1
2

∑︁
𝑙

∑︁
𝜎1

⟨𝜙𝑙 |
𝑒2

| ®𝑥1 − ®𝑟 |1spin 1 |𝜙𝑘⟩ 𝜙𝑙 (𝑤)︸                                          ︷︷                                          ︸
𝑙′→𝑘, ®𝑥2→®𝑟 𝜎2→𝜎

− 1
2

∑︁
𝑙′

∑︁
𝜎2

⟨𝜙𝑙′ |
𝑒2

|®𝑟 − ®𝑥2 |
1spin 2 |𝜙𝑘⟩ 𝜙𝑙′ (𝑤)︸                                            ︷︷                                            ︸

𝑙→𝑘, ®𝑥1→®𝑟 𝜎1→𝜎

= −
∑︁
𝑙

∑︁
𝜎1

𝜙𝑙 (𝑤) ⟨𝜙𝑙 |
𝑒2

|®𝑟 − ®𝑥1 |
1spin 1 |𝜙𝑘⟩ ,(45)

where, as above, 𝑤 = (®𝑟, 𝜎). The two terms obtained through derivation are the same, just with
different names of dummy summation and integration variables. Thus, in the last line we drop the 1/2
factor and keep only one term. In the common situation where the HF single-electron kets are eigenkets
of 𝑆𝑧, the spin identity in the Fock term generates a Kroneker 𝛿𝜎1,𝜎𝑘

, thus practically removing the
summation over 𝜎1 (leaving only a spatial integration over ®𝑥1). As a consequence, of all 𝑁𝑒 states in
the 𝑙 sum, those with spin projection orthogonal to that of electron 𝑘 do not contribute to the Fock
term.

Finally, the Lagrange-multipler term yields:

(46)
𝛿

𝛿𝜙∗
𝑘
(𝑤)

∑︁
𝑖 𝑗

𝜆𝑖 𝑗
(
⟨𝜙𝑖 |𝜙 𝑗 ⟩ − 𝛿𝑖 𝑗

)
=

∑︁
𝑗

𝜆𝑘 𝑗𝜙 𝑗 (𝑤) .

The matrix 𝜆𝑖 𝑗 of Lagrange multipliers is real-valued and symmetric. Without loss of generality, we
can suppose we make a unitary transformation in the 𝑁𝑛-dimensional space span by the |𝜙𝑖⟩, such that
the matrix of the 𝜆𝑖 𝑗 coefficient becomes diagonal. With this assumption 𝜆𝑖 𝑗 = 𝛿𝑖 𝑗𝜖𝑖.

Now we combine these 5 terms to obtain the Hartree-Fock equation:

− ℏ2

2𝑚𝑒

Δ®𝑟 𝜙𝑘 (𝑤) +𝑉ext(®𝑟)𝜙𝑘 (𝑤) +
∫

𝑑3®𝑟′ 𝑒2

|®𝑟 − ®𝑟′|𝑛(®𝑟
′) 𝜙𝑘 (𝑤) +

−
∑︁
𝑙

𝜙𝑙 (𝑤) ⟨𝜙𝑙 |
𝑒2

|®𝑟 − ®𝑥1 |
1spin 1 |𝜙𝑘⟩ = 𝜖𝑘𝜙𝑘 (𝑤) .(47)

This HF equation is a nonlinear equation for the single-electron orbitals. However, one can attempt
to view it as a linear equation, if one focuses on 𝜙𝑘 (®𝑟). In this linearized picture, the Hartree and Fock
terms of Eq. (47) depend explicitly on the (yet unknown) wavefunctions 𝜙𝑙 . A standard strategy for
the solution of the HF equation is based on repeatedly pretending that all 𝜙𝑙 – and correspondingly the
density 𝑛(®𝑟) – in Eq. (47) are known. One starts from some arbitrary initial set of 𝑁𝑒 orthonormal one-
electron wavefunctions, puts them in place of all 𝜙𝑙’s in Eq. (47), thus generating a first approximation



20 2. THE ADIABATIC POTENTIAL AND THE VIBRATIONAL DYNAMICS

for the effective potential energy acting on the single electrons; solves (usually numerically) the linear
equation for 𝜙𝑘 ; from the list of solutions, takes the 𝑁𝑒 eigenfunctions with lowest single-particle
eigenenergy 𝜖𝑘 (aufbau rule); re-inserts them into Eq. (47) in place of the 𝜙𝑙’s thus generating a better
approximation for the effective potential energy; iterates this procedure until convergence. After
several iterations (≈ 10 ÷ 100, depending on the starting 𝜓𝛽), self-consistency is usually reached, i.e.
the wavefunctions do not change appreciably from one iteration to the next. This is usually done
numerically, by expanding the one-electron orbitals on a fixed basis, and solving self-consistently the
equation for the expansion coefficients.

Electrons described by a Slater determinant are subjected to the external potential, to an electrostatic-
like mean-field potential (the Hartree term), plus a further non-local potential (the Fock exchange term)
due to the antisymmetric structure of the wavefunction, related to Pauli’s exclusion principle. The
non-locality refers to 𝜙𝑘 (𝑤′) appearing in this term inside an integral over all positions, not just at 𝑤
as in all other appearances of 𝜙𝑘 ( ) in the HF equation.

Many of the discussed properties apply to Kohn-Sham density functional theory, too. As we see
below, this theory bears a formal resemblance to Hartree-Fock theory, despite being conceptually
different.

Once the self-consistent problem is solved, the single-electron orbitals |𝜙𝑘⟩ can be plugged in into
Eq. (22). to construct the HF ground state. They can also be substituted into Eq. (36), to determine
the HF approximation to the GS energy: 𝐸HF = min 𝐸var. Note that 𝐸HF ≠

∑
𝑘 𝜖𝑘 .

Observe that the HF equation targets a stationary state, not necessarily the ground state. This
means that it can in principle be used even to compute electronically excited states.

It is possible to improve systematically the accuracy of this many-body theory, by going beyond
the Hartree-Fock single-determinant approximation. The standard method pursuing this project is
called configuration interaction (CI) approach, in which the ground-state electronic wavefunction is
expressed as a linear combination of several Slater determinants, rather than just one. However this
approach is rarely carried out for solids.

2.4. Density-Functional Theory

The density functional theory (DFT) [5] approach to the calculation of ground-state properties
of a many-electron system, relies on the crucial observation, due to Hohenberg and Köhn, that the
ground-state density

𝑛0(®𝑟) = ⟨Ψ(𝑒)
0 |𝑛̂(®𝑟) |Ψ(𝑒)

0 ⟩ ,
see Eq. (34), provides sufficient information to calculate all other ground-state properties.

2.4.1. The Hohenberg-Kohn Theorems (1965). In rigorous terms, the Hohenberg-Kohn Theo-
rem states that the GS energy of an interacting 𝑁𝑒-particle system can be computed as a functional of
the GS density 𝑛0(®𝑟). This is a surprising and counterintuitive result, as the mapping |Ψ(𝑒)⟩ → 𝑛 is
obviously not injective: there are infinitely many many-body wavefunctions that produce the same av-
erage density. We will prove this result under the simplifying assumption that the GS of the electronic
system is non-degenerate.

2.4.1.1. The First Theorem. If the two-body interaction is fixed, the mapping:

(48) 𝑉ext(®𝑟) → |Ψ(𝑒)
0 ⟩ → 𝑛0(®𝑟)

is a bĳection, up to a constant shift in 𝑉ext.
Proof.
The fact that this mapping is surjective can always be guaranteed by suitably defining the space of

acceptable GS kets |Ψ(𝑒)
0 ⟩ and densities 𝑛0(®𝑟). We just need to prove that both steps of this mapping

are injective, i.e. that different (not just by a constant) external potentials lead to different GS densities.
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Fix two external potentials 𝑉ext and 𝑉 ′
ext which differ more substantially than just by a constant.

Then, the two Hamiltonian operators:

𝐻̂
(𝑅)
𝑒 = 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ext(49)

𝐻̂
(𝑅)′
𝑒 = 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ ′

ext(50)

give rise to ground states |Ψ(𝑒)
0 ⟩ and |Ψ(𝑒)′

0 ⟩ respectively.
Assume, ad absurdum, that |Ψ(𝑒)

0 ⟩ = |Ψ(𝑒)′
0 ⟩, then:

(51) (𝐻̂ (𝑅)
𝑒 − 𝐻̂

(𝑅)′
𝑒 ) |Ψ(𝑒)

0 ⟩ = (𝐸0 − 𝐸′
0) |Ψ

(𝑒)
0 ⟩

i.e.
(52) (𝑉̂ext − 𝑉̂ ′

ext) |Ψ
(𝑒)
0 ⟩ = (𝐸0 − 𝐸′

0) |Ψ
(𝑒)
0 ⟩

Since 𝑉̂ext and 𝑉̂ ′
ext are multiplicative 1-body operators:

(53) 𝑉̂ext − 𝑉̂ ′
ext = 𝐸0 − 𝐸′

0

i.e.
(54) 𝑉ext(®𝑟) −𝑉 ′

ext(®𝑟) = 𝐸0 − 𝐸′
0

almost everywhere: the two potentials differ by a constant energy, which negates the hypothesis. We
conclude that:
(55) |Ψ(𝑒)

0 ⟩ = |Ψ(𝑒)′
0 ⟩ ⇐⇒ 𝑉ext = 𝑉 ′

ext + const
In other words, the external potential fixes univocally the GS wavefunction, and viceversa. There do
not exist two really different 𝑉exts that lead to the same GS wavefunction.

To prove the second step, we first recall that starting from a many-body wavefunction, evaluating
the average density is straightforward, following the definition Eq. (34):

𝑛(®𝑟) = ⟨Ψ(𝑒) |𝑛̂(®𝑟) |Ψ(𝑒)⟩ = ⟨Ψ(𝑒) |
∑︁
𝑗

𝛿( ®̂𝑟 𝑗 − ®𝑟) |Ψ(𝑒)⟩ =
∑︁
𝑗

⟨Ψ(𝑒) |𝛿( ®̂𝑟 𝑗 − ®𝑟) |Ψ(𝑒)⟩

= ⟨Ψ(𝑒) |𝛿( ®̂𝑟1 − ®𝑟) |Ψ(𝑒)⟩ + ⟨Ψ(𝑒) |𝛿( ®̂𝑟2 − ®𝑟) |Ψ(𝑒)⟩ + . . . [𝑁𝑒 − 2 similar terms]

=
∑︁
𝜎1

∫
𝑑𝑤2

∫
𝑑𝑤3· · ·

∫
𝑑𝑤𝑁𝑒

���Ψ(𝑒) (®𝑟 𝜎1, 𝑤2, 𝑤3, . . . , 𝑤𝑁𝑒
)
���2 +(56)

+
∫

𝑑𝑤1
∑︁
𝜎2

∫
𝑑𝑤3· · ·

∫
𝑑𝑤𝑁𝑒

���Ψ(𝑒) (𝑤1, ®𝑟 𝜎2, 𝑤3, . . . , 𝑤𝑁𝑒
)
���2 + . . .

=𝑁𝑒

∑︁
𝜎1

∫
𝑑𝑤2

∫
𝑑𝑤3· · ·

∫
𝑑𝑤𝑁𝑒

���Ψ(𝑒) (®𝑟 𝜎1, 𝑤2, 𝑤3, . . . , 𝑤𝑁𝑒
)
���2 .

The last step is a consequence of the many-body wavefunction of identical fermions being totally
antisymmetric under the exchange of any two of its arguments 𝑤𝑙 . In practice, given a many-body
wavefunction, to obtain the corresponding density one simply integrates its square modulus over 𝑁𝑒−1
position variables, with the remaining one fixed to ®𝑟, and sums over all 𝑁𝑒 spin components.

To complete the proof, assume now |Ψ(𝑒)
0 ⟩ ≠ |Ψ(𝑒)′

0 ⟩. Use the obvious 𝐻̂ (𝑅)
𝑒 = 𝐻̂

(𝑅)′
𝑒 + 𝑉̂ext − 𝑉̂ ′

ext,
and apply Ritz’s variational principle:

(57) 𝐸0 = ⟨Ψ(𝑒)
0 |𝐻̂ (𝑅)

𝑒 |Ψ(𝑒)
0 ⟩ < ⟨Ψ(𝑒)′

0 |𝐻̂ (𝑅)
𝑒 |Ψ(𝑒)′

0 ⟩ = 𝐸′
0 + ⟨Ψ(𝑒)′

0 |𝑉̂ext − 𝑉̂ ′
ext |Ψ

(𝑒)′
0 ⟩ .

Therefore:

(58) 𝐸0 − 𝐸′
0 <

∫
𝑑3®𝑟

(
𝑉ext(®𝑟) −𝑉 ′

ext(®𝑟)
)
𝑛′0(®𝑟) .
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In a similar fashion, using 𝐻̂
(𝑅)′
𝑒 = 𝐻̂

(𝑅)
𝑒 + 𝑉̂ ′

ext − 𝑉̂ext:

(59) 𝐸′
0 − 𝐸0 <

∫
𝑑3®𝑟

(
𝑉 ′

ext(®𝑟) −𝑉ext(®𝑟)
)
𝑛0(®𝑟).

Summing these relations leads to

(60) 0 <

∫
𝑑3®𝑟

(
𝑉ext(®𝑟) −𝑉 ′

ext(®𝑟)
) (
𝑛′0(®𝑟) − 𝑛0(®𝑟)

)
.

This strict inequality is incompatible with the possibility that 𝑛0(®𝑟) = 𝑛′0(®𝑟) almost everywhere.
In summary, in this second step we have proved that:

(61) |Ψ(𝑒)
0 ⟩ ≠ |Ψ(𝑒)′

0 ⟩ → 𝑛0(®𝑟) ≠ 𝑛′0(®𝑟) ,
which completes the prove that the mapping is injective.

In conclusion, even though there are infinitely many many-body wavefunctions that provide the
same density 𝑛(®𝑟), the ground-state many-body wavefunction |Ψ(𝑒)

0 ⟩ is uniquely determined by the
ground-state density 𝑛0(®𝑟). This is an amazing result, since the amount of information contained in
the many-body wavefunction is immensely larger [by an amount proportional to exp(𝑁𝑒)] than the
amount of information contained in a simple function of a 3D vector such as 𝑛0(®𝑟).

Taking the first step into account, we conclude that also the external potential 𝑉ext(®𝑟) is uniquely
determined by the ground-state density 𝑛0(®𝑟). This second conclusion is far less extraordinary, because
𝑛0(®𝑟) are𝑉ext(®𝑟) both functions of a 3D vector, thus of course one expects a one-to-one correspondence
between them.

In other words, this First Theorem allows us to invert the functional dependence outlined in (48),
so that
(62) 𝑛0(®𝑟) → |Ψ(𝑒)

0 [𝑛0]⟩ → 𝑉ext [𝑛0] (®𝑟) .
Given a ground-state density 𝑛0(®𝑟), one can legitimately be sure that a unique ground state many-body
wave function and a unique (up to a constant) external potential exist, such that the solution of the
many-body Schrödinger problems for the 𝑁𝑒 electrons in that external potential provides precisely that
given ground-state density.

Of course this existence theorem does not provide any hint how to compute this dependence
explicitly.

2.4.1.2. The Second Theorem. Let us now prove that even the ground-state energy can be expressed
as a functional of the ground-state density alone. Fixed an external potential 𝑉ext(®𝑟), the following
functional:
(63) 𝐸HK [𝑛] ≡ ⟨Ψ(𝑒)

0 [𝑛] |𝐻̂ (𝑅)
𝑒 |Ψ(𝑒)

0 [𝑛]⟩ = ⟨Ψ(𝑒)
0 [𝑛] |𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ext |Ψ(𝑒)

0 [𝑛]⟩
can be rigourosly defined (for any reasonably well behaved 𝑛(®𝑟) in the light of the first theorem. Notice
that |Ψ(𝑒)

0 [𝑛]⟩ is the (exact) ground state of the Hamiltonian:

(64) 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ext [𝑛] ,
the existence of which is guaranteed by the first theorem. Clearly, if 𝑛 = 𝑛0, 𝐸HK [𝑛0] is the exact
ground state energy of our problem defined by the given external potential𝑉ext(®𝑟). Instead, for 𝑛 ≠ 𝑛0,
𝑉̂ext [𝑛] ≠ 𝑉̂ext, and |Ψ(𝑒)

0 [𝑛]⟩ is not the ground state of the Hamiltonian 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ext! Therefore
|Ψ(𝑒)

0 [𝑛]⟩ can be seen as a linear combination involving not just the ground state, but also components
of excited states of 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ext, so that
(65) 𝐸HK [𝑛] > 𝐸HK [𝑛0] for 𝑛 ≠ 𝑛0 .

Clearly, if 𝑛 is precisely the ground-state density 𝑛0, one has 𝑉̂ext [𝑛0] = 𝑉̂ext and 𝐸HK [𝑛0] attains its
minimum value 𝐸0, smaller than all possible energies 𝐸HK [𝑛] obtained with “wrong” densities 𝑛.
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This observation allows us to write the ground-state energy:

(66) 𝐸0 = min
𝑛

𝐸HK [𝑛] ,

subjected to the conservation of particle number:
∫
𝑑3®𝑟 𝑛(®𝑟) = 𝑁𝑒.

The Hohenberg-Kohn energy functional can be made more explicit:

𝐸HK [𝑛] = ⟨Ψ(𝑒)
0 [𝑛] |𝑇𝑒 |Ψ(𝑒)

0 [𝑛]⟩ + ⟨Ψ(𝑒)
0 [𝑛] |𝑉̂𝑒𝑒 |Ψ(𝑒)

0 [𝑛]⟩ + ⟨Ψ(𝑒)
0 [𝑛] |𝑉̂ext |Ψ(𝑒)

0 [𝑛]⟩

=

∫
𝑑3®𝑟 𝑛(®𝑟)𝑉ext(®𝑟) +

𝑒2

2

∫
𝑑3®𝑟

∫
𝑑3®𝑟′ 𝑛(®𝑟)𝑛(®𝑟

′)
|®𝑟 − ®𝑟′| + 𝐹HK [𝑛] .(67)

We express 𝐸HK [𝑛] as the sum of the exact term describing the interaction with the external potential,
a Hartree energy accounting approximately for the interparticle Coulomb repulsion at a mean field
level, plus a remaining term taking into account the kinetic, exchange and correlation contributions
to the ground-state energy. In reality, Eq. (67) is the definition of 𝐹HK [𝑛]. Its usefulness comes in
shifting the difficulty of 𝐸HK [𝑛] to a presumbly smaller 𝐹HK [𝑛].

2.4.2. An example: the Thomas-Fermi approximation. For 𝐹HK [𝑛] many approximations have
been proposed. The simplest and oldest of them is the Thomas-Fermi approximation (1927). It moves
from the observation that, in a uniform and non-interacting Fermi gas the average kinetic energy per
electron is ⟨𝑇𝑒⟩ /𝑁 = 3/5 ℏ2𝑘2

𝐹
/(2𝑚𝑒), so that the total kinetic energy per unit volume is:

(68)
⟨𝑇𝑒⟩
𝑉

=
3
5
ℏ2𝑘2

𝐹

2𝑚
𝑛 with 𝑘𝐹 (𝑛) =

(
3𝜋2𝑛

)1/3
.

The TF method consists in (i) assuming that this relation holds locally also in a non-homogeneous
interacting system, introducing a density of kinetic energy

(69) 𝜀kin TF(®𝑟) =
𝑇𝑒 TF(®𝑟)

𝑉
=

3
5
ℏ2𝑘2

𝐹
(𝑛(®𝑟))

2𝑚
𝑛(®𝑟)

and in (ii) neglecting the contributions related to both exchange and correlation effects in 𝐹HK [𝑛]. We
introduce the shorthand 𝐶 = 3

5 (3𝜋2)2/3 ℏ2/(2𝑚) and define

(70) 𝐸kin TF [𝑛] =
∫

𝑑3®𝑟 𝜀kin TF(®𝑟) = 𝐶

∫
𝑑3®𝑟 𝑛(®𝑟)5/3.

The TF functional approximates the HK functional as follows:

(71) 𝐸HK [𝑛] → 𝐸TF [𝑛] = 𝐶

∫
𝑑3®𝑟 𝑛(®𝑟) 5

3 + 𝑒2

2

∫
𝑑3®𝑟

∫
𝑑3®𝑟′ 𝑛(®𝑟)𝑛(®𝑟

′)
|®𝑟 − ®𝑟′| +

∫
𝑑3®𝑟 𝑛(®𝑟)𝑉ext(®𝑟) .

The equation for the ground-state density is obtained by equating to zero the functional derivative of
𝐸TF [𝑛] with respect to the density itself:

(72)
𝛿

𝛿𝑛(®𝑟)

(
𝐸TF [𝑛] − 𝜇

[∫
𝑑3®𝑟 𝑛(®𝑟) − 𝑁𝑒

] )
= 0 ,

where the second term is a Lagrange multiplier needed to fix the density normalization to the number
of particles 𝑁𝑒. Of course, 𝜇 is a constant, independent of ®𝑟, and represents the chemical potential of
the electrons.

By evaluating the functional derivative, the resulting Thomas-Fermi equation is:

(73)
5
3
𝐶𝑛(®𝑟) 2

3 + 𝑒2
∫

𝑑3®𝑟′ 𝑛(®𝑟′)
|®𝑟 − ®𝑟′| +𝑉ext(®𝑟) = 𝜇 .

This is an integral functional equation for 𝑛, which, for given𝑉ext(®𝑟) and 𝜇, is usually solved iteratively.



24 2. THE ADIABATIC POTENTIAL AND THE VIBRATIONAL DYNAMICS

The TF functional can be improved by the addition of an exchange term [6]. The exchange energy
per electron of the homogeneous electron gas only depends on the density, and can be calculated
exactly:

(74)
𝐸x(𝑛)
𝑁𝑒

= −3
4

(
3
𝜋

)1/3
𝑒2 𝑛1/3 .

In the same spirit as for the kinetic term, this suggests adding

(75) 𝐸x [𝑛] = 𝐶′
∫

𝑑3®𝑟 𝑛(®𝑟) 4
3

to the TF energy for the nonhomogeneous situation. Here the constant 𝐶′ = −3
4 (3/𝜋)1/3 𝑒2. This

addition to the functional introduces an extra exchange term at the left side of the TF equation (73),
namely:

(76)
4
3
𝐶′𝑛(®𝑟)1/3.

The self-consistent solution can be sought by rearranging the TF equation as follows:
5
3
𝐶𝑛(®𝑟) 2

3 =𝜇 − 𝑒2
∫

𝑑3®𝑟′ 𝑛(®𝑟′)
|®𝑟 − ®𝑟′| −𝑉ext(®𝑟) −

4
3
𝐶′𝑛(®𝑟)1/3

𝑛(®𝑟) 2
3 =

3
5𝐶

[
𝜇 − 𝑒2

∫
𝑑3®𝑟′ 𝑛(®𝑟′)

|®𝑟 − ®𝑟′| −𝑉ext(®𝑟) −
4
3
𝐶′𝑛(®𝑟)1/3

]
𝑛(®𝑟) =

{ (
3

5𝐶

[
𝜇 − 𝑒2

∫
𝑑3®𝑟′ 𝑛(®𝑟 ′)

|®𝑟−®𝑟 ′ | −𝑉ext(®𝑟) − 4
3𝐶

′𝑛(®𝑟)1/3
] )3/2

usually
0 at locations ®𝑟 where the argument of (·)3/2 is negative

.(77)

One starts from an arbitary 𝑛(®𝑟), plugs it in the right hand side of Eq. (77), obtains a new 𝑛(®𝑟),
and iterates this substitution until convergence is achieved. Clearly, for an arbitrarily picked 𝜇, at the
end of the self-consistent solution of Eq. (73), one usually obtains an incorrect number of electrons∫
𝑑3®𝑟 𝑛(®𝑟) ≠ 𝑁𝑒. One can then repeat the calculation, adjusting 𝜇 until the correct normalization of

the density is obtained.
For examples of the implementation of Eq. (73) in atomic and molecular physics, see e.g. Ref. [7, 8].
The TF approximation is numerically quite cheap, but, alas, its accuracy is very very poor in the

description of situations where the electron density changes significantly over scales of the order of
𝑎0. Unfortunately this is always the case in condensed matter. As an example of unphysical behavior
of the solutions of Eq. (77), note that the density vanishes in the “classically forbidden” regions where
𝜇 − 𝑉ext(®𝑟) < 0. This feature implies the lack of all kinds of evanescent waves, long-distance decay
of the density, and the associated quantum tunneling effects. An even worst drawback of the TF
approximation, is that of predicting no bonding! For any two atoms, the adiabatic potential computed
in the TF approximation is a monotonically decreasing function of the interatomic distance [8]: it
shows no minimum, thus no molecular bond.

2.4.3. The Kohn-Sham method. The Second Theorem guarantees that there exists an exact
Hohenberg-Kohn energy functional. We need to determine a practical much better approximation
than the one provided by the TF model. To this purpose, consider a system of 𝑁𝑒 interacting electrons
in some external potential 𝑉ext(®𝑟), and denote its exact ground-state density with 𝑛0(®𝑟).

The HK theorem is not specific of the Coulomb e-e interaction: it is a general many-body theorem
that applies to identical particles interacting with any arbitrary 2-body interparticle interaction. Of
course, the corresponding HK functional will be different depending on the choice of the modified 𝑉̂𝑒𝑒.
Consider for example the special and interesting case 𝑉̂𝑒𝑒 = 0, i.e. non-interacting electrons. Given a
density 𝑛0(®𝑟) (here we focus on the exact density of the true interacting electrons, but any density here
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would do), by virtue of the First HK theorem, there exists a unique fictitious external potential 𝑉̃ext [𝑛]
such that a system of 𝑁𝑒 non-interacting electrons subjected to 𝑉̃ext [𝑛0] has ground-state density 𝑛0.

The system of non-interacting particles has the advantage that we do know its ground-state wave
function. It is a Slater determinant:

(78) Ψ
(𝑒)
KS (𝑤1 . . . 𝑤𝑁𝑒

) = 1
√
𝑁𝑒!

������ 𝜙1(𝑤1) . . . 𝜙𝑁𝑒
(𝑤1)

. . . . . . . . .

𝜙1(𝑤𝑁𝑒
) . . . 𝜙𝑁𝑒

(𝑤𝑁𝑒
)

������
of single-particle orbitals 𝜙𝑘 (𝑤) called Kohn-Sham wavefunctions that solve the single-electron
Schrödinger equation associated to 𝑉̃ext [𝑛0]. Note that, even though we use the same symbol, these
single-particle states |𝜙𝑘⟩ are generally different from the HF ones. For this state |Ψ(𝑒)

KS⟩, the density
and the kinetic energy take the forms:

(79) 𝑛(®𝑟) =
𝑁𝑒∑︁
𝑖=1

∑︁
𝜎

|𝜙𝑖 (®𝑟, 𝜎) |2,

(80) 𝐸kin KS = − ℏ2

2𝑚

𝑁𝑒∑︁
𝑖=1

∑︁
𝜎

∫
𝑑3®𝑟 𝜙𝑖 (®𝑟, 𝜎)∗Δ®𝑟 𝜙𝑖 (®𝑟, 𝜎) =

ℏ2

2𝑚

𝑁𝑒∑︁
𝑖=1

∑︁
𝜎

∫
𝑑3®𝑟 |∇®𝑟 𝜙𝑖 (®𝑟, 𝜎) |2.

Notice that the expression of 𝑛(®𝑟) in terms of single-particle orbitals is exact, and that we insist that
the ground state of the interacting system and that of the fictitious non-interacting system share the
same density 𝑛0. However, the wavefunction is obviously different |Ψ(𝑒)

0 ⟩ ≠ |Ψ(𝑒)
KS⟩, which implies that

the expression (80) for the kinetic energy is only approximate. In practice, the 𝐸kin KS of Eq. (80) does
not take into account the additional contributions to the true kinetic energy induced by the presence of
electron-electron correlations. Despite these warnings, 𝐸kin KS is far better approximation to the true
𝐸kin than 𝐸kin TF, Eq. (70).

To take advantage of this better estimation of the kinetic energy, we introduce it explicitly in the
Kohn-Sham formulation of the Hohenberg-Kohn energy functional:

(81) 𝐸HK [𝑛] = 𝐸kin KS +
∫

𝑑3®𝑟 𝑛(®𝑟)𝑉ext(®𝑟) +
𝑒2

2

∫
𝑑3®𝑟

∫
𝑑3®𝑟′ 𝑛(®𝑟)𝑛(®𝑟

′)
|®𝑟 − ®𝑟′| + 𝐸xc [𝑛] .

Here the exchange-correlation contribution 𝐸xc [𝑛] takes into account all Coulomb exchange and
correlation effects (i.e. the difference between the exact ⟨Ψ(𝑒)

0 [𝑛] |𝑉̂𝑒𝑒 |Ψ(𝑒)
0 [𝑛]⟩ and the Hartree energy

𝐸Hartree [𝑛]), as well as the difference between the exact and the Kohn-Sham (non-interacting electrons)
kinetic energy. In practice Eq. (81) is the definition of 𝐸xc [𝑛]. The advantage of the KS formulation
(81) over the original HK formulation (67) is that the less well characterized term 𝐸xc [𝑛] is usually
far smaller than 𝐹HK [𝑛].

The ground-state energy is the minimum value of the energy functional, the minimum being taken
with respect to all Kohn-Sham single-particle orbitals and under the constraint that the KS orbitals be
orthonormal, i.e.:

(82)
∫

𝑑𝑤 𝜙∗𝑖 (𝑤) 𝜙 𝑗 (𝑤) = 𝛿𝑖 𝑗 ,

the same as for the HF equation. The equation defining the Kohn-Sham orbitals is found by minimizing
the GS-energy functional under the constraint of Eq. (82), with the (by now standard) technique of the
matrix 𝜆𝑖 𝑗 of Lagrange multipliers, that we assume to be diagonal, with eigenvalues 𝜖𝑘 .
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To write the KS equation, we take the functional derivative of 𝐸HK [𝑛], Eq. (81), with respect to
the Kohn-Sham orbitals. We introduce 𝑉Hartree [®𝑟, 𝑛]:

(83)
𝛿

𝛿𝜙∗
𝑘
(𝑤)𝐸Hartree [𝑛] =

∫
𝑑3®𝑟′ 𝑒2

|®𝑟 − ®𝑟′|𝑛(®𝑟
′) 𝜙𝑘 (𝑤) ≡ 𝑉Hartree [®𝑟, 𝑛] 𝜙𝑘 (𝑤)

with 𝑤 = (®𝑟, 𝜎), see Eq. (43). Likewise,

(84)
𝛿

𝛿𝜙∗
𝑘
(𝑤)𝐸xc [𝑛] =

𝛿𝐸xc [𝑛]
𝛿𝑛(®𝑟) 𝜙𝑘 (𝑤) = 𝑉xc [®𝑟, 𝑛] 𝜙𝑘 (𝑤)

defines the exchange and correlation potential 𝑉xc [®𝑟, 𝑛].
In terms of these quantities, the Kohn-Sham equation is

(85)
(
− ℏ2

2𝑚
Δ®𝑟 +𝑉ext(®𝑟) +𝑉Hartree [®𝑟, 𝑛] +𝑉xc [®𝑟, 𝑛]

)
𝜙𝑘 (®𝑟) = 𝜖𝑘 𝜙𝑘 (®𝑟) .

In practice this equation defines the effective potential acting on the noninteracting electrons

(86) 𝑉̃ext [𝑛0] = 𝑉ext(®𝑟) +𝑉Hartree [®𝑟, 𝑛0] +𝑉xc [®𝑟, 𝑛0] ,

and giving the same density as the real interacting system, as introduced above.
The Kohn-Sham equation (85) is structurally similar to the Hartree-Fock equation (47). They

are both nonlinear equations for independent-electron wavefunctions, which can be seen as linear
Schrödinger-like equations, but with a potential that depends on the eigenfunctions themselves, re-
quiring a self-consistent solution.

The technical novelty of the KS equation is that the exchange-correlation potential is local, a
simple multiplicative operator, unlike the Fock exchange potential of the HF equation. This difference
makes the KS method highly advantageous compared to the HF method, because nonlocal terms are
usually far more costly computationally.

The KS equation provides a practical scheme for introducing the description of correlations
beyond what is done in the Hartree-Fock method, which only includes correlations arising from the
Pauli exclusion principle, through the exchange term.

On the other hand, the parameterization of the electron density in terms of the KS single-electron
orbitals constitutes a sort of betrayal of the original spirit of the DFT, which brings the KS method at
a level of computational cost and technical involvedness comparable to that of HF. In particular the
need to store 𝑁𝑒 single-electron orbitals rather than just one density function 𝑛 limits the applicability
of this method to the simulation of relatively few electrons, say 102 ÷ 103. The simulation of solids,
that involve macroscopic numbers of electrons, requires special tricks that we shall describe later on
in the course.

Once the Kohn-Sham equation are solved iteratively, the ground-state energy can be computed by
inserting the self-consistent (KS) wavefunctions into the expression of the energy functional (81). An
alternative expression for the total electronic energy is

(87) 𝐸KS [𝑛] =
𝑁𝑒∑︁
𝑘=1

𝜖𝑘 − 𝐸Hartree [𝑛] + 𝐸xc [𝑛] −
∫

𝑑3®𝑟 𝑉xc [®𝑟, 𝑛] 𝑛(®𝑟) .

Notice that the last three terms are needed to correct for differences between the expressions of the
nonlinear terms in the expressions for the total energy 𝐸HK [𝑛] and for the average value of the effective
potential (86). The latter enters the KS eigenvalues 𝜖𝑘 , and must then be corrected for.

To use the KS method concretely, some reliable approximation of the exchange-correlation func-
tional must be adopted. Notice that in a few very special cases, the exchange-correlation potential can
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be written exactly. For example, in the limiting case in which the system consists of a single electron
subjected to some external potential 𝑉ext, the Schrödinger equation reduces to

(88)
(
− ℏ2

2𝑚
Δ +𝑉ext(®𝑟)

)
𝜙(®𝑟) = 𝜀𝜙(®𝑟) .

The Kohn-Sham equation are immediately recovered if we identify 𝜙(®𝑟) with the (only) KS wavefunc-
tion, 𝜀 = 𝐸0, and 𝑉xc [®𝑟, 𝑛] = −𝑉Hartree [®𝑟, 𝑛] = −

∫
𝑑3®𝑟′𝑛(®𝑟′) 𝑒2/|®𝑟 − ®𝑟′|.

2.4.3.1. The local-density approximation (LDA). For more interesting many-electrons systems,
the simplest approximation to 𝐸xc [𝑛] is the local-density approximation (LDA), in which the exchange-
correlation contribution is expressed as the integral over the entire space of a function of the density
at each point:

(89) 𝐸LDA
xc [𝑛] =

∫
𝑑3®𝑟 𝜀HEG

xc (𝑛(®𝑟)) 𝑛(®𝑟) ,

where 𝜀HEG
xc (𝑛) is the exchange-correlation energy per electron of a homogeneous electron gas (HEG)

of density 𝑛. This expression follows the spirit of the Thomas-Fermi method, except that this
local approximation is applied to the exchange and correlation energy, a usually far smaller energy
contribution than the kinetic energy which is approximated locally by the TF method.

𝜀HEG
xc (𝑛) is a real function of a single variable, which makes it conceptually simple to evaluate and

store. In the limiting cases of low and high density, 𝜀HEG
xc (𝑛) can be evaluated analytically by means

of many-body perturbation theory. Data from quantum Monte Carlo simulations can provide 𝜀HEG
xc (𝑛)

for arbitrary intermediate densities. Standard DFT computer codes implement interpolated formulas
for 𝜀HEG

xc (𝑛), matching the asymptotic expressions and QMC data. Taking the functional derivative of
𝐸LDA

xc [𝑛], 𝑉LDA
xc is then given by

𝑉LDA
xc (𝑛(®𝑟)) = 𝑛(®𝑟) 𝑑𝜀HEG

xc (𝑛)
𝑑𝑛

����
𝑛=𝑛(®𝑟)

+ 𝜀HEG
xc (𝑛(®𝑟)) .

Here the derivative is a plain function derivative, not a functional one. The first QMC simulation
studies of the HEG date back to the 1970’s and 1980’s [9]. In 1980 Perdew and Zunger proposed a
first viable analytical interpolation of the QMC data available at that time [10]. Further refinements
of the 𝜀HEG

xc (𝑛) function have been published in the following decades.
By construction, the local LDA is exact for the HEG. In practical conditions where the density

changes with position, the LDA is known to work fairly well and provide reasonably accurate energetics.
One of the hardest problems for DFT-LDA is that of 1 electron in a strongly nonhomogeneous condition.
The H atom in LDA has a total energy of −12.1 eV, compared to the exact (and HF) value −13.6 eV.
In more standard many-electron conditions, errors are percentually smaller. In system composed by
many atoms, LDA usually tends to overbind (by a few percent).

Improvements over the LDA have been introduced, e.g. with functionals depending on the gradient
of the density (GGA).

2.5. Comparison of HF and DFT

HF starts from an approximation to the wavefunction. DFT is in principle exact.
The fundamental variable of DFT is the density 𝑛, not the wavefunction as in HF.
For the GS, HF is variational, 𝐸HF ≥ 𝐸0.
DFT is in principle exact 𝐸DFT = 𝐸0, but approximate DFT (e.g. LDA) is non variational

𝐸DFT-LDA <=> 𝐸0.
HF can be applied to the GS or to an excited state. DFT in an intrinsically GS theory (but extensions

such as time-dependent DFT are available).
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The dependence of the total energy on the position of the nuclei 𝑅 (through𝑉ext) can be minimized
to obtain the equilibrium structure. Both DFT and HF usually provide equilibrium structures close to
experiment.

The HF Fock exchange term is nonlocal. The DFT 𝑉xc [®𝑟, 𝑛] potential is local.
When we come to electrons and electronic states, we will discuss the significance of the HF and

KS single-electron eigenvalues 𝜖𝑘 . A little anticipation: HF tends to overestimate the energy gap
between occupied and empty states. DFT tends to underestimate it.

In practice, for extended systems (e.g. solids) DFT is by far the most popular method.

2.6. Crystal vibrations

Phonons are the quanta of the harmonic oscillations around the minimum of 𝑉ad(𝑅).
See Kittel [1], Chap. 4 and 5, plus Grosso Pastori-Parravicini [3], Chap. 9.

2.6.1. Equation of state of a crystal and thermal expansion. For this part we follow Ashcroft’s
book [2], Chap. 25. We recall that

(90) 𝑃 = − 𝜕𝐹

𝜕𝑉

����
𝑇

.

Here the free energy

(91) 𝐹 = 𝑈 − 𝑇𝑆 = − log 𝑍

𝛽
= −𝑘B𝑇 log 𝑍 .

For an insulating crystal

(92) 𝐹 = 𝑈minimum + 𝐹oscillators(𝑉,𝑇) .

𝑈minimum coincides with the minimum value of 𝑉ad at the equilibrium crystal structure and volume.
𝐹oscillators(𝑉,𝑇) contains the contribution of the quantum oscillators. In the harmonic approximation:

(93) 𝐹oscillators(𝑉,𝑇) =
∑︁
®𝑘,𝑠

𝐹1 ®𝑘,𝑠 =
∑︁
®𝑘,𝑠

𝐹1𝜔 ®𝑘,𝑠
.

Each term corresponds to an independent harmonic oscillator. Its partition function

(94) 𝑍1𝜔 =

∞∑︁
𝑣=0

𝑒
− ℏ𝜔

𝑘B𝑇
( 1

2+𝑣) = 𝑒
− 1

2
ℏ𝜔
𝑘B𝑇

∞∑︁
𝑣=0

𝑒
− ℏ𝜔

𝑘B𝑇
𝑣
= 𝑒

− 1
2

ℏ𝜔
𝑘B𝑇

∞∑︁
𝑣=0

(
𝑒
− ℏ𝜔

𝑘B𝑇

) 𝑣
= 𝑒

− 1
2

ℏ𝜔
𝑘B𝑇

1

1 − 𝑒
− ℏ𝜔

𝑘B𝑇

.

Whence

𝐹1𝜔 = − 𝑘B𝑇 log

(
𝑒
− 1

2
ℏ𝜔
𝑘B𝑇

1

1 − 𝑒
− ℏ𝜔

𝑘B𝑇

)
= −𝑘B𝑇

(
log 𝑒−

1
2

ℏ𝜔
𝑘B𝑇 + log

1

1 − 𝑒
− ℏ𝜔

𝑘B𝑇

)
=𝑘B𝑇

(
log 𝑒

1
2

ℏ𝜔
𝑘B𝑇 + log(1 − 𝑒

− ℏ𝜔
𝑘B𝑇 )

)
=

1
2
ℏ𝜔 + 𝑘B𝑇 log(1 − 𝑒

− ℏ𝜔
𝑘B𝑇 ) ,(95)

see Fig. 2.2.
To compute the pressure we need the ingredient

𝜕𝐹1𝜔
𝜕𝑉

����
𝑇

=
1
2
𝜕ℏ𝜔

𝜕𝑉
+ 𝑘B𝑇

𝑒
− ℏ𝜔

𝑘B𝑇

1 − 𝑒
− ℏ𝜔

𝑘B𝑇

1
𝑘B𝑇

𝜕ℏ𝜔

𝜕𝑉
=

(
1
2
+ 1

𝑒
ℏ𝜔
𝑘B𝑇 − 1

)
𝜕ℏ𝜔

𝜕𝑉
.(96)
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Figure 2.1. A sketch of instant displacements for the optical phonons of a cubic ionic
crystal, explaining the reason for different LO and TO frequencies at small (nonzero)
wavevector 𝑞.

With this result we reconstruct the pressure:

(97) 𝑃 = −𝜕𝑉ad(equilibrium, 𝑉)
𝜕𝑉

+
∑︁
®𝑘,𝑠

[1
2
+ 1

exp
(
ℏ𝜔 ®𝑘,𝑠
𝑘B𝑇

)
− 1︸             ︷︷             ︸

[𝑣®𝑘,𝑠]

] (
−
𝜕ℏ𝜔®𝑘,𝑠
𝜕𝑉

)
.

For exactly harmonic oscillators, we foresee no thermal expansion, because the ℏ𝜔®𝑘,𝑠 do not
depend on volume, see Fig. 2.3: in a harmonic crystal, pressure does not change as a function of
temperature.
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Figure 2.2. The temperature dependence of the free energy of a quantum harmonic oscillator.
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Figure 2.3. A sketch of a cut of adiabatic potential along one of the phonon normal
coordinates: comparison of the actual potential with the harmonic approximation.

To study the thermal expansion we need to assume therefore that the frequencies are affected by
volume, as occurs in real-life anharmonic solids. We target the standard experimental conditions,
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V
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we need 
the gradient 
here

Figure 2.4. An illustration of the relation (98).
(
𝜕𝑉
𝜕𝑇

)
𝑃

is precisely the slope of a
isobaric curve in this 𝑇 − 𝑉 phase diagram. To obtain this slope, we observe that it is
perpendicular to the gradient of pressure as a function of these two variables 𝑇 and 𝑉 .
This gradient is a vector with components

((
𝜕𝑃
𝜕𝑇

)
𝑉
,

(
𝜕𝑃
𝜕𝑉

)
𝑇

)
. To obtain the needed slope,

we need to apply a 90◦ rotation, which generates the rotated vector
((

𝜕𝑃
𝜕𝑉

)
𝑇
,−

(
𝜕𝑃
𝜕𝑇

)
𝑉

)
.

The needed slope of the isobaric curve is the ratio of the 𝑦 to the 𝑥 component of this
vector, namely Eq. (98).

namely fixed pressure 𝑃:

(98)
(
𝜕𝑉

𝜕𝑇

)
𝑃

= −

(
𝜕𝑃
𝜕𝑇

)
𝑉(

𝜕𝑃
𝜕𝑉

)
𝑇

.

For a justification for this formula, see Fig. 2.4.
The coefficient of linear expansion:

(99) 𝛼 =
1
ℓ

(
𝜕ℓ

𝜕𝑇

)
𝑃

=
1

3𝑉

(
𝜕𝑉

𝜕𝑇

)
𝑃

= − 1
3𝑉

(
𝜕𝑃
𝜕𝑇

)
𝑉(

𝜕𝑃
𝜕𝑉

)
𝑇

=
1
3

(
𝜕𝑃

𝜕𝑇

)
𝑉

1

−𝑉
(
𝜕𝑃
𝜕𝑉

)
𝑇

=
1

3𝐵

(
𝜕𝑃

𝜕𝑇

)
𝑉

.

Therefore, substituting the espression (97):

(100) 𝛼 =
1

3𝐵

∑︁
®𝑘,𝑠

(
−
𝜕ℏ𝜔®𝑘,𝑠
𝜕𝑉

)
𝜕 [𝑣®𝑘,𝑠]
𝜕𝑇

.

Compare this expression with that of heat capacity at fixed volume and per unit volume:

(101) 𝑐𝑉 =
1
𝑉

∑︁
®𝑘,𝑠

ℏ𝜔®𝑘,𝑠

𝜕 [𝑣®𝑘,𝑠]
𝜕𝑇

,
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obtained from 𝑈1®𝑘,𝑠 = ℏ𝜔®𝑘,𝑠

(
[𝑣®𝑘,𝑠] + 1/2

)
.

This comparison makes it natural to define:

(102) 𝑐
𝑉 ®𝑘,𝑠 =

1
𝑉
ℏ𝜔®𝑘,𝑠

𝜕 [𝑣®𝑘,𝑠]
𝜕𝑇

,

the contribution of mode ®𝑘, 𝑠 to the total heat capacity per unit volume.
Comparing Eqs. (100) and (101), we define also

(103) 𝛾®𝑘,𝑠 = − 𝑉

𝜔®𝑘,𝑠

𝜕𝜔®𝑘,𝑠
𝜕𝑉

,

called the Grüneisen parameter for mode ®𝑘, 𝑠.
We then define the overall Grüneisen parameter for the crystal as

(104) 𝛾 =

∑
®𝑘,𝑠 𝛾®𝑘,𝑠𝑐𝑉 ®𝑘,𝑠∑

®𝑘,𝑠 𝑐𝑉 ®𝑘,𝑠
,

namely a weighted average, the weights being the contributions of the individual modes to the total
heat capacity.

With this definition, comparing (100) with (104), we conclude that

(105) 𝛼 =
𝛾𝑐𝑉

3𝐵
.

Since the dimensions of 𝑐𝑉 are energy×temperature−1×volume−1 and those of the bulk modulus are
energy×volume−1, 𝛼 is correctly an inverse temperature. The typical magnitude of alpha for standard
rigid crystals is 𝛼 ∼ 10−5 K−1.

Equation (104) tells us that in case all 𝛾®𝑘,𝑠 happen to be the same, independent of ®𝑘, 𝑠, then the
weighted average is has no effect, and

(106) 𝛾 = 𝛾®𝑘,𝑠 = − 𝑉

𝜔®𝑘,𝑠

𝜕𝜔®𝑘,𝑠
𝜕𝑉

= −
𝜕 log𝜔®𝑘,𝑠
𝜕 log𝑉

.

For example in a “Debye crystal”, all frequencies scale as 𝜔D, and therefore

(107) 𝛾 = −𝜕 log𝜔D
𝜕 log𝑉

.

Recall that

(108) 𝜔D = 𝑣s

(
6𝜋2 𝑁

𝑉

)1/3
∝ 𝑉0 .

because 𝑣s ∝ 𝑎
√︁
𝐶/𝑀 and 𝑎 ∝ 𝑉1/3 for a harmonic crystal where the coupling strength 𝐶 does not

depend on volume. If however the crystal has some anharmonicity, so that 𝐶 does depend on volume,
one can assume that 𝜔D ∝ 𝑉−𝜂. In this condition, log𝜔D = −𝜂 log𝑉 + constant, so that 𝛾 = 𝜂.
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𝐵 is typically weakly dependent on temperature. In simple systems where all 𝛾®𝑘,𝑠 happen to be
the same, independent of ®𝑘, 𝑠, also 𝛾 is independent of temperature (typically 0.2 ≤ 𝛾 ≤ 2).

In these simple cases one has approximately 𝛼 ∝ 𝑐𝑉 , which goes as 𝑇3 for small temperature
𝑇 ≪ 𝜃D and goes to a constant for large 𝑇 ≫ 𝜃D.

For real solids 𝛾 does change with temperature, see figure in previous page. It may even turn
negative, see RbI!

For metals we must include the electronic contribution to pressure:

(109) 𝑃el =
2
3
𝑈el

𝑉
.

(110)
(
𝜕𝑃el

𝜕𝑇

)
𝑉

=
2

3𝑉

(
𝜕𝑈el

𝜕𝑇

)
𝑉

=
2
3
𝑐el
𝑉 .

Like above, 𝑐el
𝑉

is per unit volume.
Combining the phononic and the electronic contributions:

(111) 𝛼 =
1

3𝐵

(
𝛾𝑐vibr

𝑉 + 2
3
𝑐el
𝑉

)
.

The linear-in-𝑇 𝑐el
𝑉

is only significant at low temperature 𝑇 ≲ 10 K. However, this electronic contribu-
tion makes 𝛼 ∝ 𝑇 in metals at low temperature, a qualitative difference compared to insulators.



CHAPTER 3

Electronic structure

3.1. The simplest model for electrons in metals: free electrons

Alias: the 3D jellium model, the 3D homogeneous electron gas.
Electrons are negatively charged: it is practically impossible to maintain a sizable density of

electrons in an extended region of space without some compensating charge.
Constant background charge→ vanishing electric field→ constant electric potential→ plane-wave

solution for the electronic wave functions in the (KS) independent-electron picture.
[NB! OK for normal densities, but wrong at low density: spontaneous symmetry breaking → Wigner
crystal]

Free-electron density of orbital states:

(112) in ®𝑘 space: 𝑔𝑘 =
𝑉

8𝜋3

Kinetic energy ℏ2𝑘2/(2𝑚𝑒) increasing with | ®𝑘 |.
Thus at 𝑇 = 0, states are filled below a max | ®𝑘 | = 𝑘F and empty above. This defines a Fermi

sphere, Fig. 3.1.

(113) The “volume” of the Fermi sphere =
4
3
𝜋𝑘3

F

(114) number of states in Fermi sphere, i.e. with 𝑘 ≤ 𝑘F = 𝑔𝑘
4𝜋
3

𝑘3
F =

𝑉

6𝜋2 𝑘3
F .

kx

ky

F
filled states

empty states

k

~~
h  k

F
2

M k  TBkδ

Figure 3.1. Thermal excitations/deexcitations across the Fermi sphere involve mainly
states within a skin region with thickness 𝛿𝑘 ∝ 𝑘B𝑇 across the Fermi sphere. Here this
skin thickness is greatly exaggerated, compared to the occupation smearing induced by
a realistic temperature 𝑇 ≪ 𝑇F of electrons in ordinary metals at room conditions

35



36 3. ELECTRONIC STRUCTURE

To be multiplied by 𝑔𝑠 = 2 to account for spin.
The total number of electrons

(115) 𝑁 =
𝑉

3𝜋2 𝑘
3
F

yields the relations between 𝑘F and the density 𝑛 = 𝑁/𝑉 :

𝑛 =
𝑘3

F
3𝜋2(116)

𝑘F = (3𝜋2𝑛)1/3 .(117)
Certain authors sometimes adopt a parameter 𝑟𝑠 to express 𝑛.

(118)
4
3
𝜋𝑟3

𝑠 = volume of a sphere of radius 𝑟𝑠 .

𝑟𝑠 is the radius of a sphere as large as the volume 1/𝑛 available to each electron:

(119)
4
3
𝜋𝑟3

𝑠 =
1
𝑛
.

Invert this relation and obtain:

(120) 𝑟𝑠 =

(
3

4𝜋𝑛

)1/3
.

Note also that

(121) 𝑘F =

(
3𝜋2

𝑛−1

)1/3
=

(
3𝜋2

4
3𝜋𝑟

3
𝑠

)1/3

=

(
9𝜋
4

)1/3 1
𝑟𝑠

≃ 1.92
𝑟𝑠

.

Typical densities in ordinary metals
(122) 0.9 × 1028 m−3 ≤ 𝑛 ≤ 2.5 × 1029 m−3

correspond to
(123) 3 Å ≥ 𝑟𝑠 ≥ 1 Å ,

or equivalently
(124) 5.6 𝑎0 ≥ 𝑟𝑠 ≥ 1.9 𝑎0 .

[Note: Wigner crystal wins for 𝑛 < 1.4 × 1024 m−1, or 𝑟𝑠 > 56 Å = 102 𝑎0, far more rarefied than
standard metals!!]

In the ordinary density range

(125) 0.64 Å−1 ≤ 𝑘𝐹 ≤ 1.9 Å−1
.

The Fermi energy

(126) 𝜖F =
ℏ2𝑘2

𝐹

2𝑚𝑒

=
ℏ2

2𝑚𝑒

(
3𝜋2𝑛

)2/3
≃ 14 eV Å2

𝑟2
𝑠

.

For the relevant densities in metals one gets
(127) 1.6 eV ≤ 𝜖F ≤ 14 eV .

Discuss table on metals in Kittel (Chap. 6, Table 1).
Useful formula: the density of free-electron kinetic-energy states:

(128) 𝑔(𝜖) = 3
2
𝑁

𝜖
1/2

𝜖
3/2
F

.
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In particular, the density of states at the Fermi energy can easily be obtained from Eq. (128):

(129) 𝑔(𝜖F) =
3
2
𝑁

𝜖F
.

The 0-temperature total KS kinetic energy is

(130) 𝐸kin =
3
5
𝑁 𝜖F (from a simple ®𝑘-integration).

To obtain the total energy of the electrons, one should add some potential-energy. In the KS
scheme the potential energy 𝑉̃ (®𝑟) = 𝑉ext(®𝑟) + 𝑉Hartree [®𝑟, 𝑛0] + 𝑉xc [®𝑟, 𝑛0], Eq. (86), is normally a
function of position. For a homogeneous electron gas, where𝑉ext is a constant, 𝑉̃ is just a constant (i.e.
position-independent) potential energy, because the ground-state density 𝑛0 is constant too. According
to Eq. (81), the total potential energy is

(131)
∫

𝑑3𝑟𝑛0𝑉ext +
𝑒2

2

∫
𝑑3𝑟

∫
𝑑3𝑟′

𝑛0𝑛0

®𝑟 − ®𝑟′ + 𝐸xc [𝑛0] .

Calculation of the potential-energy contributions to the total electronic energy:
(132)

𝐸Hartree [𝑛0] =
1
2

1
4𝜋𝜖0

∫
𝑑3®𝑟

∫
𝑑3®𝑟′ [−𝑞𝑒𝑛0(®𝑟)] [−𝑞𝑒𝑛0(®𝑟′)]

|®𝑟 − ®𝑟′| =
1
2
𝑒2𝑛2

0

∫
𝑑3®𝑟

∫
𝑑3®𝑟′ 1

|®𝑟 − ®𝑟′| .

In the thermodynamic limit of infinitely large Volume → ∞ both these integrals diverge. As a result,
overall this Hartree energy diverges as Volume2! This result is embarrassing: we are happy that a
total-energy contribution diverges with Volume, consistent with a finite energy density (or energy per
electron). But a divergence as Volume2 implies that the energy density is infinitely large!

This apparent paradox is solved by taking the positive-charge background (jellium) into account.
The total adiabatic energy is an eigenvalue of

(133) 𝐻̂
(𝑅)
𝑒 = 𝑇𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂ (𝑅)

𝑒𝑛 + 𝑉̂ (𝑅)
𝑛𝑛

see Eq. (11).
Consider first 𝑉̂ (𝑅)

𝑛𝑛 . In real matter with discretely located nuclei at fixed positions, this contribution
to 𝑉ad would be

(134) 𝐸𝑛𝑛 =
1
2

1
4𝜋𝜖0

𝑁𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝑍𝑖𝑞𝑒 𝑍 𝑗𝑞𝑒

| ®𝑅𝑖 − ®𝑅 𝑗 |
=
𝑒2

2

𝑁𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝑍𝑖 𝑍 𝑗

| ®𝑅𝑖 − ®𝑅 𝑗 |
.

In the jellium model we have smeared positive charge, whose electrostatic repulsion energy is:

(135) 𝐸𝑛𝑛 = 𝐸jellium =
1
2

1
4𝜋𝜖0

∫
𝑑3®𝑟

∫
𝑑3®𝑟′ [𝑞𝑒𝑛0] [𝑞𝑒𝑛0]

|®𝑟 − ®𝑟′| =
𝑒2

2

∫
𝑑3®𝑟

∫
𝑑3®𝑟′

𝑛2
0

|®𝑟 − ®𝑟′| .

This is (of course!) exactly the same as the diverging Hartree repulsion between the uniformely
distributed electrons (132).

The other missing Coulomb term is the attraction between the electrons and the jellium background:

(136) 𝐸ext =

∫
𝑑3®𝑟 𝑛0𝑉ext =

1
4𝜋𝜖0

∫
𝑑3®𝑟

∫
𝑑3®𝑟′ [−𝑞𝑒𝑛0] [𝑞𝑒𝑛0]

|®𝑟 − ®𝑟′| = −𝑒2
∫

𝑑3®𝑟
∫

𝑑3®𝑟′
𝑛2

0
|®𝑟 − ®𝑟′| .

[Notice that Eq. (136) has no 1/2 correction for double counting.] This electron-jellium term is negative
(attractive), and it diverges as Volume2 too. Clearly,

(137) 𝐸ext + 𝐸Hartree [𝑛0] + 𝐸jellium =

(
−1 + 1

2
+ 1

2

)
𝑒2

∫
𝑑3®𝑟

∫
𝑑3®𝑟′

𝑛2
0

|®𝑟 − ®𝑟′| = 0 .
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Figure 3.2. The sum of the kinetic plus Coulomb exchange energy contributions
to the total adiabatic energy of the homogeneous electron gas, as a function of the
electron density. As the classic electrostatic terms cancel exactly, this energy only
neglects correlation contributions, see Sect. 2.4.3.1.

Thus we have perfect cancellation of the attractive electron-jellium term with the two repulsive
electron-electron (Hartree) energy and jellium-jellium energy terms.

This takes classic electrostatics into account.
There remains the exchange & correlation energy, and this term has a correct extensive behavior,

it grows as Volume (or equivalenty as 𝑁), not as Volume2.
See Ashcroft [2] Chap 2 (independent electrons) and 17 (electron-electron interaction treated

within a self-consistent field scheme, Hartree-Fock).
In particular, in the uniform gas, for the Slater determinant of plane waves it is possible to write

an exact expression of the Fock exchange energy as

(138) 𝐸𝑥 = − 3
4𝜋

𝑒2𝑘F 𝑁 = −3
4

(
9

4𝜋2

)1/3
𝑒2

𝑟𝑠
𝑁 = −3

4

(
3
𝜋

)1/3

𝑒2 𝑛1/3 𝑁 = −3
4

(
3
𝜋

)1/3

𝑒2 𝑛4/3 × Volume .

Note the negative sign, and the dependence ∝ 𝑛1/3 ∝ 𝑟−1
𝑠 of the exchange energy per particle.

For the correlation energy we lack a similar analytic expression (just asymptotic formulas and
interpolations of Monte Carlo data, see Sec. 2.4.3.1).

Leaving the correlation energy out for simplicity, the total adiabatic energy of the homogeneous
electron gas also contains two terms, the kinetic energy and the exchange one:

(139) 𝐸tot = 𝑁

(
3
5
𝜖F + 𝜖x

)
.

We can express this energy per electron:

(140)
𝐸tot
𝑁

=
3
5
𝜖F + 𝜖𝑥 =

3
5

ℏ2

2𝑚𝑒

𝑘2
F −

3
4𝜋

𝑒2𝑘F =
3
5

ℏ2

2𝑚𝑒

(
3𝜋2𝑛

)2/3
− 3

4

(
3
𝜋

)1/3

𝑒2 𝑛1/3.

The positive kinetic term grows as 𝑛2/3 ∝ 𝑟−2
𝑠 , the negative exchange term grows as 𝑛1/3 ∝ 𝑟−1

𝑠 . At
small density, the exchange term dominates.
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The competition between the 2 terms gives a negative balance for 𝑛 < 2.48 × 1028 m−3 (i.e.
𝑟𝑠 > 2.127 Å), and positive energy above, see Fig. 3.2. The minimum of 𝐸tot/𝑁 = −0.0284966 𝐸Ha =
−0.775 eV, occurs for 𝑛 = 3.1 × 1027 m−3, i.e. 𝑟𝑠 = 4.254 Å. An overall negative energy, indicates
that a jellium-homogeneous electron gas system (if it existed) would remain in mechanical equilib-
rium, thanks to the exchange energy. A positive total energy signals mechanical instability: the
jellium+homogeneous electron gas would spontaneously decompose under the explosively large pres-
sure associated to the kinetic energy of the electrons, if no other forces were there to keep it together
at that density.

Be well aware of the difference between the total energy of Eq. (139), which is a macroscopic
thermodynamic quantity, and the single-electron “quasiparticle band” energies:

(141) 𝜖 ( ®𝑘) = ℏ2𝑘2

2𝑚𝑒

+ 𝑉̃ ,

which are “intensive” quantities, directly comparable to the chemical potential 𝜇. [In atoms, we
similarly contrast the total energy with the individual shell levels.]

3.1.1. AC conductivity of the HEG. Alias: Kittel [1] Chap. 6, Problem 6.
Starting point, the electric current density:

(142) ®𝑗 = −𝑞𝑒𝑛®𝑣 .
Invert:

(143) ®𝑣 = 1
−𝑞𝑒𝑛

®𝑗 .

Equation of motion for the drift velocity ®𝑣:

(144) 𝑚𝑒

(
𝑑

𝑑𝑡
+ 1
𝜏

)
®𝑣 = −𝑞𝑒 ®𝐸 .

Substitute Eq. (143)

(145) 𝑚𝑒

(
𝑑

𝑑𝑡
+ 1
𝜏

)
1

−𝑞𝑒𝑛
®𝑗 = −𝑞𝑒 ®𝐸 .

Simplify:

(146)
(
𝑑

𝑑𝑡
+ 1
𝜏

)
®𝑗 =

𝑞2
𝑒𝑛

𝑚𝑒

®𝐸 .

Assume a sinusoidally oscillating field

(147) ®𝐸 = ®𝐸0𝑒
−𝑖𝜔𝑡 .

and make a corresponding ansatz for the current in the steady regime:

(148) ®𝑗 = ®𝑗0𝑒−𝑖𝜔𝑡 .
Substitute in Eq. (146):

(149)
(
𝑑

𝑑𝑡
+ 1
𝜏

)
®𝑗0𝑒−𝑖𝜔𝑡 =

𝑞2
𝑒𝑛

𝑚𝑒

®𝐸0𝑒
−𝑖𝜔𝑡 .

Take the derivative and simplify the trivial factor 𝑒−𝑖𝜔𝑡 :

(150)
(
−𝑖𝜔 + 𝜏−1

)
®𝑗0 =

𝑞2
𝑒𝑛

𝑚𝑒

®𝐸0 .



40 3. ELECTRONIC STRUCTURE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

visc
ous r

egim
e inertial regime

σ
/σ

0

ωτ

Re σ
Im σ

Figure 3.3. The frequency-dependent real and imaginary parts of the electric AC
conductivity of free electrons.

Rearrange:

(151) ®𝑗0 =
𝑞2
𝑒𝑛

𝑚𝑒

(
𝜏−1 − 𝑖𝜔

) ®𝐸0 =
𝑞2
𝑒𝑛

𝑚𝑒𝜏
−1 (1 − 𝑖𝜔𝜏)

®𝐸0 = 𝜎0
1

1 − 𝑖𝜔𝜏
®𝐸0 ,

where 𝜎0 = 𝑞2
𝑒𝑛𝜏/𝑚𝑒 is the usual static conductivity. Equation (151) defines a frequency-dependent

complex conductivity 𝜎. It may be convenient to separate the real and imaginary part of 𝜎 with the
following trick:

(152) 𝜎 = 𝜎0
1

1 − 𝑖𝜔𝜏
= 𝜎0

1 + 𝑖𝜔𝜏

(1 − 𝑖𝜔𝜏) (1 + 𝑖𝜔𝜏) = 𝜎0
1 + 𝑖𝜔𝜏

1 + (𝜔𝜏)2 =
𝜎0

1 + (𝜔𝜏)2 + 𝑖
𝜎0 𝜔𝜏

1 + (𝜔𝜏)2 .

Figure. 3.3 reports these quantities.
Note that a complex 𝜎 indicates a dephasing of current density relative to the electric field (i.e.,

of the current relative to the applied oscillating voltage):
• real 𝜎 → ®𝑗0 and ®𝐸0 have the same phase → ®𝑗 and ®𝐸 oscillate in phase;
• Re𝜎 ≫ Im𝜎 → ®𝑗 is only slightly phase-delayed relative to ®𝐸 ;
• Re𝜎 = Im𝜎 → ®𝑗 is phase-delayed by 45◦ relative to ®𝐸 ;
• Re𝜎 ≪ Im𝜎 → ®𝑗 is phase-delayed by 90◦ relative to ®𝐸 .

3.2. Electrons in periodic crystals

3.2.1. Preliminary observations on symmetry. Recall the Kohn-Sham equation (85) (the same
reasoning could be carried out within HF as well):

(153)
(
− ℏ2

2𝑚
Δ +𝑉ext(®𝑟) +𝑉Hartree [®𝑟, 𝑛] +𝑉xc [®𝑟, 𝑛]︸                                     ︷︷                                     ︸

𝑉̃ (®𝑟)

)
𝜙𝑘 (®𝑟) = 𝜖𝑘 𝜙𝑘 (®𝑟) .
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Figure 3.4. Two possible ground-state densities resulting from a periodic external
potential: an equally-periodic density (dashed), which shares the same symmetry as
the potential, and a CDW density (solid), exhibiting a doubled period. This CDW is an
example of spontaneous symmetry breaking.

Here the effective potential 𝑉̃ (®𝑟) = 𝑉̃ext [𝑛0] (®𝑟) acts on the single-electron wave functions in the KS
scheme. In a crystal, 𝑉ext(®𝑟) is a periodic function.

If 𝑛0(®𝑟) is also periodic with the same periodicity as 𝑉ext(®𝑟), then of course also 𝑉̃ (®𝑟) is.
Note the if. The charge density is not guaranteed to have the same (periodic) symmetry as the

extern potential. In certain crystals, spontaneous symmetry breaking can occur. The density can have
a lower symmetry than the extern potential. This kind of spontaneous symmetry breaking is analogous
to the Wigner crystal discussed previously in the context of the electrons+jellium model.

The simplest example of charge density with lower symmetry than the external potential is a
charge-density wave (CDW) with period doubling, as sketched in Fig. 3.4. The longest-wavelength
component in the Fourier expansion of 𝑛0(®𝑟), ®𝑞CDW is one half of some primitive reciprocal vector ®𝑏1.

Several other more complicated solutions may arise in real-life 3D crystals, including nonperiodic
ones, where the CDW wave vector ®𝑞CDW is incommensurate to the ®𝐺 vectors of the reciprocal lattice.

A nonzero response of the lattice phonons to the charge perturbation at ®𝑞CDW will lead to a crystal
distortion, which will eventually lower the symmetry of𝑉ext(®𝑟) too! In the example of period doubling
the resulting distortion is called Peierls dimerization.

Is the lower symmetryof 𝑛0(®𝑟) causing the ionic distortion and the ensuing structural symmmetry
lowering, or vice versa? A chicken vs. egg causality dilemma...

3.2.2. The KS equation in a periodic effective potential. Assume that the total self-consistent
effective potential 𝑉̃ (®𝑟) is indeed periodic. Then:

(154) 𝑉̃ (®𝑟) =
∑︁
®𝐺

𝑈 ®𝐺 𝑒𝑖
®𝐺 ·®𝑟 ,

where the sum extends over all ®𝐺 vectors in the reciprocal lattice. Observe that since 𝑉̃ (®𝑟) = 𝑉̃eff [𝑛0] (®𝑟)
is real, we can be sure that 𝑈− ®𝐺 = 𝑈∗

®𝐺
.
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The KS equation (85) can be written in the form

(155)
(
− ℏ2

2𝑚
Δ + 𝑉̃ (®𝑟) − 𝜖

)
𝜙(®𝑟) = 0 .

A smart approach to Eq. (155) comes with a Fourier expansion of its solution:

(156) 𝜙(®𝑟) =
∑︁
®𝑘 ′

𝐶 ( ®𝑘′) 𝑒𝑖®𝑘 ′·®𝑟 .

We plan to substitute both Fourier expansions in the equation (155). The kinetic term yields:

− ℏ2

2𝑚
Δ𝜙(®𝑟) = − ℏ2

2𝑚
Δ

∑︁
®𝑘 ′

𝐶 ( ®𝑘′) 𝑒𝑖®𝑘 ′·®𝑟 = − ℏ2

2𝑚

∑︁
®𝑘 ′

𝐶 ( ®𝑘′) Δ𝑒𝑖®𝑘 ′·®𝑟 = ℏ2

2𝑚

∑︁
®𝑘 ′

𝑘′2𝐶 ( ®𝑘′) 𝑒𝑖®𝑘 ′·®𝑟 .

The potential term becomes

𝑉̃ (®𝑟)𝜙(®𝑟) =
∑︁
®𝐺

𝑈 ®𝐺 𝑒𝑖
®𝐺 ·®𝑟

∑︁
®𝑘 ′

𝐶 ( ®𝑘′) 𝑒𝑖®𝑘 ′·®𝑟 =
∑︁
®𝐺

∑︁
®𝑘 ′

𝐶 ( ®𝑘′)𝑈 ®𝐺 𝑒𝑖(
®𝐺+®𝑘 ′)·®𝑟 .

We substitute these results in Eq. (155), multiply both sides by exp(−𝑖®𝑘 · ®𝑟), and integrate in 𝑑3®𝑟 over
all space:∫

𝑑3®𝑟𝑒−𝑖®𝑘 ·®𝑟 ©­« ℏ2

2𝑚

∑︁
®𝑘 ′

𝑘′2𝐶 ( ®𝑘′)𝑒𝑖®𝑘 ′·®𝑟 +
∑︁
®𝐺

∑︁
®𝑘 ′

𝐶 ( ®𝑘′)𝑈 ®𝐺 𝑒𝑖(
®𝐺+®𝑘 ′)·®𝑟 − 𝜖

∑︁
®𝑘 ′

𝐶 ( ®𝑘′)𝑒𝑖®𝑘 ′·®𝑟ª®¬ = 0

ℏ2

2𝑚

∑︁
®𝑘 ′

𝑘′2𝐶 ( ®𝑘′)
∫

𝑒𝑖(
®𝑘 ′−®𝑘)·®𝑟 𝑑3®𝑟+

+
∑︁
®𝐺

∑︁
®𝑘 ′

𝐶 ( ®𝑘′)𝑈 ®𝐺

∫
𝑒𝑖(

®𝐺+®𝑘 ′−®𝑘)·®𝑟𝑑3®𝑟+

−𝜖
∑︁
®𝑘 ′

𝐶 ( ®𝑘′)
∫

𝑒𝑖(
®𝑘 ′−®𝑘)·®𝑟𝑑3®𝑟 = 0 .

In the large-sample limit, the spatial integration produces Kronecker deltas over the momenta:

(157)
∫

Volume
𝑒𝑖(

®𝑘 ′−®𝑘)·®𝑟 𝑑3®𝑟 = Volume𝛿®𝑘 ′,®𝑘

Therefore, simplifying a common Volume factor, the ®𝑘′ summations disappear leaving simply:

(158)

®𝑘 ′=®𝑘︷       ︸︸       ︷
ℏ2

2𝑚
𝑘2𝐶 ( ®𝑘) +

®𝑘 ′=®𝑘− ®𝐺︷                ︸︸                ︷∑︁
®𝐺

𝐶 ( ®𝑘 − ®𝐺)𝑈 ®𝐺 −

®𝑘 ′=®𝑘︷ ︸︸ ︷
𝜖𝐶 ( ®𝑘) = 0 .

Precisely this disappearance of the ®𝑘′ summations is the consequence of the lattice periodicity of 𝑉̃ (®𝑟),
and its resulting discrete Fourier representation. Defining

(159) 𝐸kin
®𝑘

=
ℏ2𝑘2

2𝑚
,

Eq. (158) is conveniently rewritten as

(160)
(
𝐸kin
®𝑘

− 𝜖

)
𝐶 ( ®𝑘) +

∑︁
®𝐺

𝐶 ( ®𝑘 − ®𝐺)𝑈 ®𝐺 = 0 .
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For this ®𝑘-space representation of the Schrödinger - KS equation, Kittel [1] has a special name: central
equation. It connects a given ®𝑘 with all other ®𝑘′ = ®𝑘 − ®𝐺, see Fig. 7 of Chap. 7 of Kittel.

Importantly, no mixing with any other ®𝑘 point in the reciprocal space is provided. This is a crucial
consequence of the periodicity of 𝑉̃ (®𝑟).

One can therefore solve Eq. (160) for a given ®𝑘 point in the 1BZ (combined with its ®𝐺-vector
translations ®𝑘 − ®𝐺), and obtain solutions:

(161) 𝜙®𝑘 (®𝑟) =
∑︁
®𝐺

𝐶 ( ®𝑘 + ®𝐺) 𝑒𝑖( ®𝑘+ ®𝐺)·®𝑟 = 𝑒𝑖
®𝑘 ·®𝑟

∑︁
®𝐺

𝐶 ( ®𝑘 + ®𝐺) 𝑒𝑖 ®𝐺 ·®𝑟

︸                 ︷︷                 ︸
𝑢 ®𝑘 (®𝑟), periodic!

.

The function 𝑢®𝑘 (®𝑟) is of course periodic with the same lattice periodicity as 𝑉̃ (®𝑟), because all plane
waves based on ®𝐺 vectors are periodic by definition of the reciprocal lattice. Equation (161) expresses
and proves Bloch’s theorem. Single-electron eigenfunctions of the Schrödinger - KS equation can
always be made in the form (161). This is a consequence of the discrete translation symmetry of the
effective 1-electron Hamiltonian.

Note that the contribution

(162) |𝜙®𝑘 (®𝑟) |
2 = |𝑒𝑖®𝑘 ·®𝑟 |2 |𝑢®𝑘 (®𝑟) |

2

of any single-electron Bloch eigenfunction to the total electron density is necessarily periodic as well.
This proves that periodic-density solutions can certainly provide self-consistent solutions. Also, from
the practical solution side, starting from a non-GS but periodic density 𝑛(®𝑟) one is certain to generate
a periodic 𝑉̃ (®𝑟), which in turn produces new Bloch functions, a new periodic density and so on...
always periodically at all steps toward the self-consistent 𝑛0(®𝑟).

Note that this observation does not rule out CDW solutions. Lower-periodicity or non-periodic
solutions may be self-consistent, too. They can occasionally have lower total adiabatic energy than the
periodic solution, and constitute therefore the true ground state, as e.g. in NbSe3 and in 1T (trigonal)
TaS2. When simulating a solid, one should always be aware of this possibility, and verify whether it
occurs.

3.2.3. Simulations of electronic KS equation in a crystal. To set up a computer simulation, one
needs the following “ingredients”:

(1) a simulation cell, e.g. a primitive cell in the (real-space) Bravais lattice;
(2) the atomic positions inside the cell (= the crystallographic basis), that fix 𝑉ext(®𝑟);
(3) a (truncated = incomplete) quantum-mechanical basis on which KS orbitals are expanded

(e.g. plane waves, or atomic orbitals, or Gaussians, or...);
(4) a sampling grid in a reciprocal-lattice cell (e.g. in the 1BZ);
(5) a startup density 𝑛(®𝑟) (not especially important, e.g. a uniform density is OK).

The core of the calculation is the solution of a matrix eigenvalue equation – e.g. Eq. (160) in the
plane-waves quantum basis – for the expansion coefficients of the KS orbitals.

This matrix diagonalization is carried out for each ®𝑘 in the grid.
The computer code stores each wave function as a vector of coefficients of expansion on the basis

(e.g. the 𝐶 ( ®𝑘 + ®𝐺)’s in the example of plane waves). This storage must be done for each ®𝑘 in the grid,
and for each Bloch eigenstate resulting from the matrix diagonalization.

From the resulting wave functions and the known number of electrons, a new electron density
can be computed, plugged in the Hartree and exchange&correlation functionals, a new (®𝑘-dependent)
matrix is generated, and the diagonalizations are redone.

This procedure is iterated again and again, with the density 𝑛(®𝑟) → 𝑛0(®𝑟) eventually.
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Figure 3.5. The Fermi surfaces of Na (bcc), Al (fcc) and Cr (bcc).

Figure 3.6. The silicon band structure. The energy 0 is made coincide with the top
of the valence band. Note that the conduction-band minima sit at some intermediate
position between Γ and 𝑋 . Right: 1BZ for the fcc Bravais lattice, with the energy
contour levels slightly above the conduction-band minima marked as blue surfaces.

The KS total energy → the adiabatic potential is evaluated (for this structure).

3.2.4. Fermi surfaces.
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Figure 3.7. The temperature dependence of the chemical potential and densities of
charge carriers for doped silicon in the 2-band model [4]. The data for this figure
are obtained by means of the script http://materia.fisica.unimi.it/manini/
scripts/semiconductor_carrier_concentration.py

http://materia.fisica.unimi.it/manini/scripts/semiconductor_carrier_concentration.py
http://materia.fisica.unimi.it/manini/scripts/semiconductor_carrier_concentration.py




CHAPTER 4

Electronic transport and optical response

4.1. Optical response of solids
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Figure 4.1. The complex plane, with the path that the dielectric function 𝜀 = 𝜀1 + 𝑖𝜀2
of a Drude metal follows, as 𝜔 increases from 0 (left) to ∞ (right). The density
𝑁/𝑉 ≃ 2.54 × 1028 m−3 and scattering time 𝜏 ≃ 3.2 × 10−14 s are those appropriate
for sodium at room temperature [𝜏−1 ≃ 3.12 × 1013 s−1, 𝜔𝑝 ≃ 9.00 × 1015 rad/s,
corresponding to ℏ𝜏−1 = 0.0206 eV, ℏ𝜔𝑝 ≃ 5.92 eV]. Inset: a broad-range dependence,
from far infrared 𝜔 ≪ 𝜏−1 to ultraviolet 𝜔 ≫ 𝜔𝑝; the thin line marks the vertical
asymptote for 𝜔 → 0, at 𝜀1 = 1 − (𝜔p𝜏)2. Main plot: a blowup of the region around
𝜔p.
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Figure 4.2. The path that the complex refractive index 𝑁 = 𝑛 + 𝑖𝑘 =
√
𝜀 of a Drude

metal follows, with 𝜔 increasing from 0 (above) to ∞ (below). The density 𝑁/𝑉
and scattering time 𝜏 are the same as for Fig. 4.1, appropriate for sodium at room
temperature. Inset: the overall dependence, from 𝜔 ≪ 𝜏−1 to 𝜔 ≫ 𝜔𝑝; the thin
diagonal line is the oblique asymptote for 𝜔 → 0. Main plot: a blowup of the region
around 𝜔p.

4.2. Transport in the Boltzmann formalism

Calculations leading to Eq. (11.40) of Grosso Pastori-Parravicini [3]:

𝜎( ®𝑞, 𝜔) =
𝑞2
𝑒

4𝜋3

∫
𝜏𝑣2

𝑥

1 − 𝑖𝜏(𝜔 − 𝑞𝑣𝑧)

(
−𝑑𝑓0
𝑑𝜖

)
𝑑3𝑘(163)

In the 𝑇 ≪ 𝑇F limit

𝜎( ®𝑞, 𝜔) =
𝑞2
𝑒

4𝜋3

∫
Fermi surface

𝜏𝑣2
𝑥

1 − 𝑖𝜔𝜏 + 𝑖𝑞𝑣𝑧𝜏

𝑑2𝑆®𝑘
ℏ|®𝑣 |(164)
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For a parabolic-band metal, with 𝜏 = 𝜏F independent of the direction of ®𝑘 , the Fermi surface is a
sphere and spherical coordinates are recommendable for integration:

𝜎( ®𝑞, 𝜔) =
𝑞2
𝑒

4𝜋3

∫
Fermi sphere

𝜏F𝑣
2
𝑥

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣𝑧𝜏F

𝑑2𝑆®𝑘
ℏ|®𝑣 |(165)

=
𝑞2
𝑒𝜏F

4𝜋3ℏ

∫
Fermi sphere

𝑣2
F sin2 𝜃

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F cos 𝜃𝜏F

𝑑2𝑆®𝑘
𝑣F

=
𝑞2
𝑒𝜏F

4𝜋3ℏ
𝑣F𝑘

2
F

∫ 𝜋

0
𝑑𝜃

∫ 2𝜋

0
𝑑𝜑

sin3 𝜃 cos2 𝜑

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F cos 𝜃𝜏F

=
𝑞2
𝑒𝜏F

4𝜋3ℏ
𝑣F𝑘

2
F𝜋

∫ 𝜋

0
𝑑𝜃

sin3 𝜃

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F cos 𝜃𝜏F

In the last line we used
∫ 2𝜋
0 cos2 𝜑𝑑𝜑 = 𝜋. We rewrite the final integration with the usual change of

variable 𝑥 = cos 𝜃, implying sin2 𝜃 = 1 − 𝑥2 and 𝑑𝑥 = − sin 𝜃𝑑𝜃:

𝜎( ®𝑞, 𝜔) =
𝑞2
𝑒𝜏F

4𝜋3ℏ
𝑣F𝑘

2
F𝜋

∫ 1

−1

1 − 𝑥2

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F𝑥𝜏F
𝑑𝑥(166)

=
𝑞2
𝑒𝜏F

4𝜋3ℏ

ℏ𝑘F
𝑚∗ 𝑘

2
F𝜋

∫ 1

−1

1 − 𝑥2

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F𝜏F𝑥
𝑑𝑥

=
𝑞2
𝑒𝜏F

4𝜋2𝑚∗ 𝑘
3
F

∫ 1

−1

1 − 𝑥2

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F𝜏F𝑥
𝑑𝑥

=
𝑞2
𝑒𝜏F

4𝜋2𝑚∗ (3𝜋
2𝑛)

∫ 1

−1

1 − 𝑥2

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F𝜏F𝑥
𝑑𝑥

=
3
4
𝑞2
𝑒𝜏F𝑛

𝑚∗

∫ 1

−1

1 − 𝑥2

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F𝜏F𝑥
𝑑𝑥

=
3
4
𝜎0

∫ 1

−1

1 − 𝑥2

1 − 𝑖𝜔𝜏F + 𝑖𝑞𝑣F𝜏F𝑥
𝑑𝑥

We introduce

𝑠 =
𝑖𝑞𝑣F𝜏F

1 − 𝑖𝜔𝜏F
(167)

and rewrite

𝜎( ®𝑞, 𝜔) =3
4

𝜎0
1 − 𝑖𝜔𝜏F

∫ 1

−1

1 − 𝑥2

1 + 𝑠𝑥
𝑑𝑥(168)

The primitive function of 1−𝑥2

1+𝑠𝑥 is:

−𝑥2

2𝑠
+ 𝑥

𝑠2 + 𝑠2 − 1
𝑠3 ln(1 + 𝑠𝑥)(169)

Substitute the extremes ±1, and obtain Eq. (11.40) of Grosso Pastori-Parravicini [3].





APPENDIX A

Functional Derivatives

The concept of functional derivation represent an important tool for performing minimization
operations. In this appendix we provide a few useful definitions and basic results of functional
calculus.

Recall the definition of the derivative of regular functions with 𝑁 variables. The derivative is done
with respect to one such variable, say the 𝑘th. This is the 𝑘 component of the gradient of 𝐹 (𝑢1 . . . 𝑢𝑁 ),
and is given by
(170)

𝜕𝐹

𝜕𝑢

����
𝑘

≡ 𝜕𝐹

𝜕𝑢𝑘
= lim

𝜖→0

𝐹 (𝑢1 . . . 𝑢𝑘 + 𝜖 . . . 𝑢𝑁 ) − 𝐹 (𝑢1 . . . 𝑢𝑁 )
𝜖

= lim
𝜖→0

𝐹 ({𝑢𝑙 + 𝜖𝛿𝑙,𝑘 }) − 𝐹 ({𝑢𝑙})
𝜖

,

where 𝑙 is just a dummy component index. Functional derivatives make a generalizing step of this
definition to the case of infinitely-continuously-many indexes 𝑘 .

Given a set Ω ⊆ R𝑛 (a sufficiently regular domain), let us denote:

(171) F (Ω) = {𝑢 : Ω → R} ,
where 𝑢 are sufficiently regular functions 𝑢(𝑥). Here the continuous variable 𝑥 takes the place of the
discrete index 𝑘 . A functional on Ω is a map:

(172) Φ : F (Ω) → R 𝑢(𝑥) ↦→ Φ[𝑢] .
Linear maps are simple and remarkable examples of functionals:

(173) Φ[𝑢] =
∫
Ω

𝑑𝑦 𝑔(𝑦) 𝑢(𝑦) ,

but one easily defines nonlinear functionals too. E.g.

(174) Φ[𝑢] =
∫
Ω

𝑑𝑦 𝑔(𝑦) sin(𝑢(𝑦)) ,

or

(175) Φ[𝑢] =
∫
Ω×Ω

𝑑𝑦1 𝑑𝑦2 𝑔(𝑦1, 𝑦2) 𝑢(𝑦1)𝑢(𝑦2) .

The functional derivative of Φ at an element 𝑢 in the set of functions F (Ω) which can be taken
for the argument of Φ is a function 𝛿Φ

𝛿𝑢
(precisely like the gradient of a scalar function of vectors 𝐹 (𝑢)

is a vector). Its value at point 𝑥 is defined by:

(176)
𝛿Φ

𝛿𝑢
[𝑢] (𝑥) ≡ 𝛿Φ

𝛿𝑢(𝑥) = lim
𝜖→0

Φ[𝑢(𝑦) + 𝜖𝛿(𝑦 − 𝑥)] −Φ[𝑢]
𝜖

,

where 𝑦 ∈ Ω is just the dummy variable of the function argument ofΦ. Here 𝛿(·) is the (𝑛-dimensional)
Dirac delta.

Let us apply this definition to a few examples. As a first example, consider an arbitrary linear
functional, i.e. a functional satisfying

(177) Φ[𝑢 + 𝑣] = Φ[𝑢] +Φ[𝑣] , Φ[𝜖𝑢] = 𝜖Φ[𝑢] .
51
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As a consequence, applying the definition of functional derivative,

(178)
𝛿Φ

𝛿𝑢(𝑥) = Φ[𝛿(𝑦 − 𝑥)] .

For the example of the linear functional in Eq. (173), we obtain

(179)
𝛿Φ

𝛿𝑢(𝑥) = 𝑔(𝑥) .

A simple special case is represented by the linear functional that selects the value of the function
at one special point 𝑥0:

(180) Φ[𝑢] = 𝑢(𝑥0) ≡
∫
Ω

𝑑𝑦 𝛿(𝑦 − 𝑥0)𝑢(𝑦) .

In this last formulation it comes in the form of Eq. (173), so that:

(181)
𝛿Φ

𝛿𝑢(𝑥) = 𝛿(𝑥 − 𝑥0) .

Another simple special case is represented by the integral:

(182) Φ[𝑢] =
∫
Ω

𝑑𝑦 𝑢(𝑦) .

This is a special case of Eq. (173) with 𝑔(𝑥) ≡ 1, so that:

(183)
𝛿Φ

𝛿𝑢(𝑥) = 1 .

The second example is the quadratic functional of Eq. (175). For this case

(184)
𝛿Φ

𝛿𝑢(𝑥) =

∫
Ω

𝑑𝑦 (𝑔(𝑥, 𝑦) + 𝑔(𝑦, 𝑥)) 𝑢(𝑦) .

Many remarkably important functionals take the form:

(185) Φ[𝑢] =
∫
Ω

𝑑𝑦 𝑔(𝑦, 𝑢(𝑦),∇𝑢(𝑦)) .

In this case, the functional derivative can be shown to be

(186)
𝛿Φ

𝛿𝑢(𝑥) =
𝜕𝑔

𝜕𝑢
(𝑥, 𝑢(𝑥),∇𝑢(𝑥)) −

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

𝜕𝑔

𝜕∇𝑖𝑢
(𝑥, 𝑢(𝑥),∇𝑢(𝑥)) .

The extension of this formalism to functionals of complex-valued functions {𝑢 : Ω → C} is
straightforward. The most natural approach consists in considering a complex-valued 𝑢(𝑥) function
as a pair of real-valued functions 𝑢𝑟 (𝑥) + 𝑖𝑢𝑖 (𝑥), and to express the functional derivative with respect
to 𝑢 to the functional derivatives with respect to its real and imaginary part.

To this purpose, we recall the following properties of derivation with respect to a complex variable:

(187) 𝑓 (𝑧) ≡ 𝑓 (𝑧𝑟 , 𝑧𝑖) = 𝑓

(
𝑧 + 𝑧∗

2
,
𝑧 − 𝑧∗

2𝑖

)
(188)

𝜕

𝜕𝑧
𝑓 (𝑧𝑟 , 𝑧𝑖) = 𝑓

(
𝑧 + 𝑧∗

2
,
𝑧 − 𝑧∗

2𝑖

)
=

1
2
𝜕 𝑓

𝜕𝑧𝑟
+ 1

2𝑖
𝜕 𝑓

𝜕𝑧𝑖
.

Sumbolically, 𝜕𝑧 = 1
2 𝜕𝑧𝑟 +

1
2𝑖 𝜕𝑧𝑖 . Using this definition, one can immediately observe that:

(189) 𝜕𝑧𝑧 = 1 𝜕𝑧𝑧
∗ = 0 .

This formula indicates that the one can consider 𝑧∗ as linearly independent of 𝑧. This is a consequence
of the real and imaginary parts of a complex quantity being really independent variables.
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Bringing these observations in the world of functional derivatives,

(190)
𝛿Φ

𝛿𝑢(𝑥) and
𝛿Φ

𝛿𝑢∗(𝑥)
are fully independent functions.
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