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Parallel transport and geometric phase

A vector field |¢) depending on a multidimensional parameter ¢

(a)>

ex.: H(y‘wj@» = Ej(@ ’¢](®>

14(q)) is parallel-transported along a path ¢(&) if (¢(q(€))| d%W((j’(é“)» —0

4(q)) acquires a geometric phase factor (1(gin)|¥(Gn)) / |(¥(Gin)| %(gtin))]



Original formulation |Berry 1984

The path ¢ = ¢{(s) is time-parameterized and closes to an adiabatic loop.

The vectors involved are single-valued eigenstates of Hg ¢§> = E7(q) ¢§>

The Berry phase associated to the loop is

_ / @IV (@) - dds = / i (0 (@)|Vav (D) - d]

r

If Wé} is parallel transported then ¢; = 0, but then generally WQ is not
single valued, and the BP is precisely ¢; = Imlog(1(gin)|¥(Gn))

The circuit integral of the 1-form (connection) can be recast into a surface

integral of the 2-form (curvature) [Simon 1983]:

¢; =—Im [ (Ve (DA Vg (@) - dS =
S(T)




Formulation in terms of Bargmann invariants
[Simon Mukunda 1993]

The continuous adiabatic evolution could be replaced by a discrete
sequence of nonorthogonal states.

The evolution |1x) — |1r11) need not even be unitary.

The geometric phase factor associated to this sequence of n states is:

e'? =y = S((Yr]th2) (Waltha).. (Yn—1]¥n)(Ynlth1))

with ®(z) = z/|z|

for complex z # 0.

Phase tracking algorithms




Extensions

The single-state [¢)7) may be replaced by a degenerate n-dimensional

space: the “phase” relation becomes a whole unitary matrix in SU(n),

an element of a non abelian group [Wilczek Zee 1984].

The path I" need not be closed (Pancharathnam 1956).

the open-path phase can
be reduced to a closed-path
phase by closing it with
a geodesic [Samuel Bhan-
dari 1988] provided that

(¢(Gin)|1(gtin)) 7# 0




What about the relative phases of several vectors [11(q)), |¥2(q)),... in a
nondegenerate context? Anything measurable there?




Another generalization!?!

Take states |9 y (¢q)) parallel-transported from ¢, to ¢z, along path I': their

Berry-Pancharatnam phase factor are

el =f = o(()(@)l0)(@m)))  with @(2) = 2/l

For n states, consider the parallel-evolution matrix
Ui, Uiy
Ujrk — <¢L|7| (C]m)Wﬂ; <Qﬁn)>7 U21 U22

the traditional Berry phase factor is just the diagonal element ; = CID(U JI;) :
This is all is there for cyclic evolutions (matrix U is diagonal).

What about the information contents of the off-diagonal elements U jrk?




Is the phase factor o) = CID(Uij) = <I><(¢;-' (Cﬁn)|¢;!(§ﬁn)>) measurable?

NO!

It depends on arbitrary choices of the initial phases of two different
eigenstates |¢‘|7| (Gin)) and |w,!(cfm)>

a?k is not gauge-invariant — it is arbitrary, thus non-measurable.

\ A

Vad
:—:<Y7 ):- Idea: combine two o¢’s in the product:

PV = of b = ()l ) ) ) )

’yjrk is clearly gauge invariant.

MAIN FINDING: vjr,{ is a measurable geometric quantity!




(Geometric Interpretation [in projective Hilbert space]
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G]k dashed curves

i(5)

_ _S:\k— k(s)

v = €xXp (_i Im ffsj dS (V1y;| x |V2¢j>> (diagonal)

Yik = exp (—z’ Im ffsjde (V11| x |V2¢j>> (off-diagonal)

Like standard single-state open-path geometic phase is reduced to a loop

N\

with the help of geodesics




More measurable phases, general expression

U T r T r
d1j2gs...qi — Z4152 Pjais Oji_151 5141

[ = 1: one-state “diagonal” phase
| = 2: two-states off-diagonal as above 0, ;,0,4,
[ > 2: more intricate phase relations among off-diagonal components
Notes:
e any cyclic permutation of the indexes j15273...7; is immaterial

e if one index is repeated, the associated v(l) can be decomposed into a
product ’y(l/) ’y(l_l/) — [ <n

e n? real numbers fix the unitary matrix U': only a finite number of v(V’s are

algebraically independent




Crucial example: Permutational case

;i Ejlvi) (¥
Zj E; |¢Pj > <¢Pj |
P = permutation of the n eigenstates

The only meaningful ajrk’s are the n phase factors 05 P,

For example:

P1:2; PQZS, P3:1

Only well-defined ~(): ygé — 01009303 = ellartaztas)




geometric phase factors

condition det U' = 1

# of Re cases

71

= 1

Y1 Y2
Y12

Y1 y2 = 1
Y12 = —1

Y1 Y2 Y3
Y12 V3
Y13 Y2
Y23 71
Y123

Y132

Y1v2y3 =1
Yiz7ys = —1
Y1372 = —1
Y2371 = —1
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Application 2: two-state system (qubit)

U U1 Ujpo e'P cos a e'X gin o
U1 Uso —e Xgina e #Pcosa
Thus:
’Y]_ — ¢(U1]_) = Sgn(COS Oé) 67;5 ")/2 f— @(U22) — Sgn(COS &) 6_7:6
Yi2 = ®(U12U21) = —Sgn(sin2 a) eXe™™X = 1

“trivial” case, like diagonal phase of single state



Application 3: H ()

A special permutational case:

(

Exact because of symmetry (ex. spin systems, ¢ = B)

Approximate in perturbative expansion H(q) = ¢- HY + ... when for ¢= 0

n states are degenerate (ex. quantum billiards...)




Comparison with nonabelian phases

Nonabelian
W(g,,)>
W(G@,)>

n vectors remain degenerate along the
evolution. The states can recombine
within the n-dimensional subspace. Fol-
lowing a different path I from ¢ to
gsn one obtains a different mix of the
final states ¢an: a completely different
Uji = () (dn) |4 (@hn)) could be real-

ized (invariance group SU(n)).

Abelian
W(G;)>

W(d;,)>

r

nondegenerate evolution. The fi-

nal states |¢£((j’ﬁn)> are fixed up to

a phase for any path leading to
Jin — U' is essentially fixed, ex-
cept for some phase information cap-
tured by the diagonal and off-diagonal

()T

phases ;% ;. ;. Invariance group:

U(1)xU(1)xU(1)xU(1)x... .




Further theoretical work

e Relation with Bargmann invariants [Mukunda et al., PRA 2001]:
)T in n in n in n :
The structure of 7", = D ((pl |¢3ﬁ2 {3, |¢3ﬁ3 ). (U5 W?l )) is that

J1J2J3---Ji
of a Bargmann invariant!

All off-diag phases can be expressed in terms of the 4-vertex invariants

Ajp = <¢;n‘¢1{3n><¢;€n|¢2n><¢}€n\¢?n><¢;n\¢?n> + the diagonal phases.

Only j < k < n needed — %(n —1)(n—2) independent off-diag phases.

Generalization to mixed states [Filipp Sioqvist PRL 2003] Define an

density matrix p— as orthogonal as possible to p. The corresponding
off-diagonal phase factor is v,,. = ® [Tr(U”\/ﬁ Ul \/pL)]

and similar definition for fy(l)




EXPERIMENTAL EVIDENCE 1 — neutron spin

2-state system: the off-diagonal phase factor v12 = €™ = —1 is trivial.

Interferometry: split a beam and insert a controlled phase x, recombine the

beam [) = eX |1)7) + |111), producing an intensity:
I = (ply) = (Wrlbr) + Wurlbrr) + 2/ |rr)| cos(x — @)

The offset of the oscillation measures the phase ¢ in e*® = ®({17||¢r1))

Start with a pure spinor state

) = (ijggg;) _ Desvalive —> @emrpare wiih [ = (‘C?Sf(lé% ?)

Trick: take [¢r) = [~ ) (W~ |U~ oT) and |¢rr) = |9~ ) (@~ | U [¢F),

with U=a-rotation along Z.
Result: I = 2sin”(#)sin*(a/2)[1 4 cos(x — )]

The off-diagonal phase of 715 = 7 should appear as complete anti-phase of
the recombined intensity I, independent of a-rotation.



The setup for neutron interferometry
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Intensity (arb.units)
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Intensity (arb. units)
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Parallel transport in quantum billard: follow nodal structure
adiabatically along the distortion path, and keep phase real.
Open-path result: at 6 = 7, ¥ «— 13, state 2 changes sign.
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Laplace operator in (u,v) coordinates

A B B,
V2=32482 — V2=1(0,,0,) D
B C B,

where A, B, C, D are complicate functions of u, v, a, b, Aa, Ab

[see D.E. Manolopoulos and M.S. Child, Phys. Rev. Lett. 82, 2223 (1999)]




Approximate treatment:

degenerate perturbation theory in ¢ = (Aa, Ab) = g(cosf,sinb):

H(§) = —Laplacian = H9 + ¢ HY(0) + > H?)(0) + . ..

unperturbed basis: V(ny,ny) (U, V) = \/% sin( 2= ) sin(

Interesting case: degenerate multiplets
example: if a/b = V'3 “geometrical degeneracies” appear, for

(ny,ny) = (2,4), (5,3), and (7,1) :
HO®  —  const = 5272/3
HY 5 a3 x3matrix =cosl F +sinf F’

2 e (2) 1 (| HO g ) (1 [H D 9h;)
H (ilH \¢g>+k§2’3 o




Perturbation theory . Observed

for the path 6 =0 — 7
observed o = —1, while 1%% order gives 75 = 1
observed vi13 = 1, while 1%% order gives 13 = —1
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eigenvalues of first-order term H (1 (f): almost degeneracies in 4 directions




First order fails completely in green region in figure
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General observations on quantum billard experiments

e Satellite degeneracies (degeneracies within the range of validity of
perturbation theory, involving minor components on states outside the

multiplet) do often appear

e Whenever in a degenerate multiplet one state is near some states [so
that second-order coupling is large| for which selection rule

(—1)m=tne = (—1)™+" = 1 makes first-order coupling vanish, and at

the same time it is far from all remaining states [so that AE() ig

small], one is likely to find satellite degeneracies.

e Wide scope: Laplacian




SUMMARY
Off-diagonal geometric phases: [PRL 85, 3067 (2000)]

e only appear in open-path evolution
complete the set of phase infos of diagonal phases

in the case of permutations are the only available info

seen in neutron-spin interferometry [PRA 65, 052111 (2002)]
— trick of forward-backward evolution

— trivial case: v12 = —1

seen in “quantum billiards” [PRL 85, 1585 (2000)]

— discovered previously overlooked satellite degeneracies

— through higher-order expansion + exact numerical solution

to be seen & used in quantum computers

http://www.mi.infm.it/manini




