Off-diagonal geometric phases

Nicola Manini - Università degli Studi di Milano, Italy

Fabio Pistolesi - CNRS, Grenoble, France

```
Phys. Rev. Lett. 85, 1585 (2000) \longrightarrow Phys. Rev. Lett. 85, 3067 (2000) \longleftarrow Phys. Rev. A 65, 052111 (2002)
```

OUTLINE

- Parallel transport & geometric phases
- Off-diagonal phases
 - Definition
 - Generalizations
 - Applications
 - Further work
 - Examples
- Experimental evidence
 - Neutron spin interferometry
 - Conical intersections in "quantum billiards"
- Conclusions

Parallel transport and geometric phase

A vector field $|\psi\rangle$ depending on a multidimensional parameter \vec{q}

ex.:
$$H_{\vec{q}} | \psi^j(\vec{q}) \rangle = E^j(\vec{q}) | \psi^j(\vec{q}) \rangle$$

 $|\psi(\vec{q})\rangle$ is parallel-transported along a path $\vec{q}(\xi)$ if $\langle \psi(\vec{q}(\xi))|\frac{d}{d\xi}|\psi(\vec{q}(\xi))\rangle = 0$

 $|\psi(\vec{q})\rangle$ acquires a geometric phase factor $\langle \psi(\vec{q}_{\rm in})|\psi(\vec{q}_{\rm fin})\rangle / |\langle \psi(\vec{q}_{\rm in})|\psi(\vec{q}_{\rm fin})\rangle|$

Original formulation [Berry 1984]

The path $\vec{q} = \vec{q}(s)$ is time-parameterized and closes to an adiabatic loop.

The vectors involved are *single-valued* eigenstates of $H_{\vec{q}} | \psi_{\vec{q}}^j \rangle = E^j(q) | \psi_{\vec{q}}^j \rangle$.

The Berry phase associated to the loop is

$$\phi_j = \int_{s_{\rm in}}^{s_{\rm fin}} i \langle \psi^j(\vec{q}) | \nabla_{\vec{q}} \psi^j(\vec{q}) \rangle \cdot \dot{\vec{q}} ds = \int_{\Gamma} i \langle \psi^j(\vec{q}) | \nabla_{\vec{q}} \psi^j(\vec{q}) \rangle \cdot d\vec{q}$$

If $|\psi_{\vec{q}}^{j}\rangle$ is parallel transported then $\phi_{j} = 0$, but then generally $|\psi_{\vec{q}}^{j}\rangle$ is not single valued, and the BP is precisely $\phi_{j} = \text{Im} \log \langle \psi(\vec{q}_{\text{in}}) | \psi(\vec{q}_{\text{fin}}) \rangle$

The circuit integral of the 1-form (connection) can be recast into a surface integral of the 2-form (curvature) [Simon 1983]:

$$\phi_j = -\operatorname{Im} \int_{S(\Gamma)} \langle \nabla_{\vec{q}} \psi^j(\vec{q}) | \wedge | \nabla_{\vec{q}} \psi^j(\vec{q}) \rangle \cdot dS = \int_{S(\Gamma)} -\operatorname{Im} \sum_{a < b} \langle \partial_{q_a} \psi^j | \partial_{q_b} \psi^j \rangle dq_a \wedge dq_b$$

Formulation in terms of Bargmann invariants [Simon Mukunda 1993]

The continuous adiabatic evolution could be replaced by a discrete sequence of nonorthogonal states.

The evolution $|\psi_k\rangle \longrightarrow |\psi_{k+1}\rangle$ need not even be unitary.

The geometric phase factor associated to this sequence of n states is:

$$e^{i\phi} = \gamma = \Phi(\langle \psi_1 | \psi_2 \rangle \langle \psi_2 | \psi_3 \rangle \dots \langle \psi_{n-1} | \psi_n \rangle \langle \psi_n | \psi_1 \rangle)$$

with $\Phi(z) = z/|z|$ for complex $z \neq 0$.

Phase tracking algorithms

Extensions

- The single-state $|\psi^j\rangle$ may be replaced by a degenerate *n*-dimensional space: the "phase" relation becomes a whole unitary matrix in SU(n), an element of a non abelian group [Wilczek Zee 1984].
- The path Γ need not be closed (Pancharathnam 1956).

the open-path phase can be reduced to a closed-path phase by closing it with a geodesic [Samuel Bhandari 1988] provided that $\langle \psi(\vec{q}_{\rm in})|\psi(\vec{q}_{\rm fin})\rangle \neq 0$ What about the relative phases of several vectors $|\psi_1(\vec{q})\rangle$, $|\psi_2(\vec{q})\rangle$,... in a nondegenerate context? Anything measurable there?

Another generalization!?!

Take states $|\psi_j^{\parallel}(\vec{q})\rangle$ parallel-transported from $\vec{q}_{\rm in}$ to $\vec{q}_{\rm fin}$ along path Γ : their Berry-Pancharatnam phase factor are

$$e^{i\phi_j^{\Gamma}} = \gamma_j^{\Gamma} \equiv \Phi\left(\langle \psi_j^{\parallel}(\vec{q}_{\rm in})|\psi_j^{\parallel}(\vec{q}_{\rm fin})\rangle\right) \quad \text{with } \Phi(z) = z/|z|$$

For n states, consider the parallel-evolution matrix

$$U_{jk}^{\Gamma} = \langle \psi_j^{\parallel}(\vec{q}_{\rm in}) | \psi_k^{\parallel}(\vec{q}_{\rm fin}) \rangle, \qquad \begin{pmatrix} U_{11}^{\Gamma} & U_{12}^{\Gamma} & \dots \\ U_{21}^{\Gamma} & U_{22}^{\Gamma} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

the traditional Berry phase factor is just the diagonal element $\gamma_j^{\Gamma} \equiv \Phi(U_{jj}^{\Gamma})$. This is all is there for cyclic evolutions (matrix U^{Γ} is diagonal).

What about the information contents of the off-diagonal elements U_{jk}^{Γ} ?

Is the phase factor
$$\sigma_{jk}^{\Gamma} \equiv \Phi\left(U_{jk}^{\Gamma}\right) = \Phi\left(\langle \psi_{j}^{\parallel}(\vec{q}_{\rm in})|\psi_{k}^{\parallel}(\vec{q}_{\rm fin})\rangle\right)$$
 measurable?

It depends on arbitrary choices of the initial phases of two different eigenstates $|\psi_i^{\parallel}(\vec{q}_{\rm in})\rangle$ and $|\psi_k^{\parallel}(\vec{q}_{\rm in})\rangle$.

 σ_{ik}^{Γ} is not gauge-invariant \longrightarrow it is arbitrary, thus non-measurable.

Idea: combine two σ 's in the product:

$$\gamma_{jk}^{\Gamma} = \sigma_{jk}^{\Gamma} \ \sigma_{kj}^{\Gamma} = \Phi\left(\langle \psi_j^{\parallel}(\vec{q}_{\rm in}) | \psi_k^{\parallel}(\vec{q}_{\rm fin}) \rangle \langle \psi_k^{\parallel}(\vec{q}_{\rm in}) | \psi_j^{\parallel}(\vec{q}_{\rm fin}) \rangle\right)$$

 γ_{jk}^{Γ} is clearly gauge invariant.

MAIN FINDING:

 γ_{jk}^{Γ} is a measurable geometric quantity!

Geometric interpretation [in projective Hilbert space]

Like standard single-state open-path geometric phase is reduced to a loop with the help of geodesics

More measurable phases, general expression

$$\gamma_{j_1 j_2 j_3 \dots j_l}^{(l) \Gamma} = \sigma_{j_1 j_2}^{\Gamma} \, \sigma_{j_2 j_3}^{\Gamma} \, \cdots \, \sigma_{j_{l-1} j_l}^{\Gamma} \, \sigma_{j_l j_1}^{\Gamma}$$

l = 1: one-state "diagonal" phase

l=2: two-states off-diagonal as above $\sigma_{j_1j_2}\sigma_{j_2j_1}$

l > 2: more intricate phase relations among off-diagonal components

Notes:

- any cyclic permutation of the indexes $j_1j_2j_3...j_l$ is immaterial
- if one index is repeated, the associated $\gamma^{(l)}$ can be decomposed into a product $\gamma^{(l')} \gamma^{(l-l')} \longrightarrow l \leq n$
- n^2 real numbers fix the unitary matrix U^{Γ} : only a finite number of $\gamma^{(l)}$'s are algebraically independent

Crucial example: Permutational case

$$\begin{cases} H(\vec{q}_1^P) &= \sum_j E_j |\psi_j\rangle \langle \psi_j| \\ H(\vec{q}_2^P) &= \sum_j E_j' |\psi_{P_j}\rangle \langle \psi_{P_j}| \end{cases}$$

P = permutation of the n eigenstates

The only meaningful σ_{jk}^{Γ} 's are the n phase factors $\sigma_{j P_{j}}^{\Gamma}$. For example:

$$P_1 = 2; \ P_2 = 3; \ P_3 = 1$$
 \longrightarrow $U^{\Gamma} = \begin{pmatrix} 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \\ e^{i\alpha_3} & 0 & 0 \end{pmatrix}$

Only well-defined
$$\gamma^{(l)}$$
: $\gamma_{123}^{(3)} = \sigma_{12}\sigma_{23}\sigma_{31} = e^{i(\alpha_1 + \alpha_2 + \alpha_3)}$

\overline{n}	P	geometric phase factors	condition $\det U^{\Gamma} = 1$	# of Re cases
1	1	γ_1	$\gamma_1 = 1$	1
2	1 2	$\gamma_1 \gamma_2$	$\gamma_1 \gamma_2 = 1$	2
	2 1	γ_{12}	$\gamma_{12} = -1$	1
3	1 2 3	$\gamma_1 \ \gamma_2 \ \gamma_3$	$\gamma_1 \gamma_2 \gamma_3 = 1$	4
	2 1 3	$\gamma_{12} \gamma_3$	$\gamma_{12}\gamma_3=-1$	2
	3 2 1	$\gamma_{13} \gamma_2$	$\gamma_{13}\gamma_2=-1$	2
	1 3 2	$\gamma_{23} \gamma_1$	$\gamma_{23} \gamma_1 = -1$	2
	2 3 1	γ_{123}	$\gamma_{123} = 1$	1
	3 1 2	γ_{132}	$\gamma_{132} = 1$	1
4	1 2 3 4	$\gamma_1 \ \gamma_2 \ \gamma_3 \ \gamma_4$	$\gamma_1 \gamma_2 \gamma_3 \gamma_4 = 1$	8
	2 1 3 4	$\gamma_{12} \ \gamma_3 \ \gamma_4$	$\gamma_{12}\gamma_3\gamma_4=-1$	4
	2 3 4 1	γ_{1234}	$\gamma_{1234} = -1$	1
		•••••		

Application 1: Approximate permutational case

$$U^{\Gamma} \simeq \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} & e^{i\alpha_1} \\ \epsilon_{21} & \epsilon_{22} & e^{i\alpha_2} & \epsilon_{24} \\ \epsilon_{31} & e^{i\alpha_3} & \epsilon_{32} & \epsilon_{34} \\ e^{i\alpha_4} & \epsilon_{41} & \epsilon_{42} & \epsilon_{44} \end{pmatrix}$$

Application 2: two-state system (qubit)

$$U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} = \begin{pmatrix} e^{i\beta}\cos\alpha & e^{i\chi}\sin\alpha \\ -e^{-i\chi}\sin\alpha & e^{-i\beta}\cos\alpha \end{pmatrix}$$

Thus:

$$\gamma_1 = \Phi(U_{11}) = \operatorname{sgn}(\cos \alpha) e^{i\beta} \qquad \gamma_2 = \Phi(U_{22}) = \operatorname{sgn}(\cos \alpha) e^{-i\beta}$$
$$\gamma_{12} = \Phi(U_{12}U_{21}) = -\operatorname{sgn}(\sin^2 \alpha) e^{i\chi} e^{-i\chi} = -1$$

"trivial" case, like diagonal phase of single state

Application 3:
$$H(\vec{q}_2) \longrightarrow -H(\vec{q}_1)$$

A special permutational case:

$$U = \left(egin{array}{ccccccc} 0 & 0 & 0 & 0 & e^{ilpha_1} \ 0 & 0 & 0 & e^{ilpha_2} & 0 \ 0 & 0 & e^{ilpha_3} & 0 & 0 \ 0 & e^{ilpha_4} & 0 & 0 & 0 \ e^{ilpha_5} & 0 & 0 & 0 & 0 \end{array}
ight)$$

Exact because of symmetry (ex. spin systems, $\vec{q} = \vec{B}$)

Approximate in perturbative expansion $H(\vec{q}) = \vec{q} \cdot H^{(1)} + \dots$ when for $\vec{q} = 0$ n states are degenerate (ex. quantum billiards...)

Comparison with nonabelian phases

n vectors remain degenerate along the evolution. The states can recombine within the n-dimensional subspace. Following a different path Γ' from $\vec{q}_{\rm in}$ to $\vec{q}_{\rm fin}$ one obtains a different mix of the final states $\vec{q}_{\rm fin}$: a completely different $U_{jk}^{\Gamma} = \langle \psi_j^{\parallel}(\vec{q}_{\rm in})|\psi_k^{\parallel}(\vec{q}_{\rm fin})\rangle$ could be realized (invariance group ${\rm SU}(n)$).

nondegenerate evolution. The final states $|\psi_k^{\parallel}(\vec{q}_{\text{fin}})\rangle$ are fixed up to a phase for any path leading to $\vec{q}_{\text{fin}} \longrightarrow U^{\Gamma}$ is essentially fixed, except for some phase information captured by the diagonal and off-diagonal phases $\gamma_{j_1 j_2 j_3 \dots j_l}^{(l) \Gamma}$. Invariance group: $U(1) \times U(1) \times U(1) \times U(1) \times \dots$.

Further theoretical work

- Relation with Bargmann invariants [Mukunda et al., PRA 2001]: The structure of $\gamma_{j_1 j_2 j_3 \dots j_l}^{(l) \Gamma} = \Phi(\langle \psi_{j_1}^{\text{in}} | \psi_{j_2}^{\text{fin}} \rangle \langle \psi_{j_2}^{\text{in}} | \psi_{j_3}^{\text{fin}} \rangle \dots \langle \psi_{j_l}^{\text{in}} | \psi_{j_1}^{\text{fin}} \rangle)$ is that of a Bargmann invariant! All off-diag phases can be expressed in terms of the 4-vertex invariants $\Delta_{jk} = \langle \psi_j^{\text{in}} | \psi_k^{\text{fin}} \rangle \langle \psi_k^{\text{in}} | \psi_j^{\text{fin}} \rangle \langle \psi_j^{\text{in}} | \psi_j^{\text{fin}} \rangle + \text{the diagonal phases.}$ Only $j < k < n \text{ needed} \longrightarrow \frac{1}{2}(n-1)(n-2)$ independent off-diag phases.
- Generalization to mixed states [Filipp Siöqvist PRL 2003] Define an density matrix ρ^{\perp} as orthogonal as possible to ρ . The corresponding off-diagonal phase factor is $\gamma_{\rho\rho^{\perp}} = \Phi\left[\operatorname{Tr}(U^{\parallel}\sqrt{\rho}\;U^{\parallel}\sqrt{\rho^{\perp}})\right]$ and similar definition for $\gamma^{(l)}$

EXPERIMENTAL EVIDENCE 1 – neutron spin

2-state system: the off-diagonal phase factor $\gamma_{12} \equiv e^{i\pi} = -1$ is trivial.

Interferometry: split a beam and insert a controlled phase χ , recombine the beam $|\psi\rangle = e^{i\chi} |\psi_I\rangle + |\psi_{II}\rangle$, producing an intensity:

$$I = \langle \psi | \psi \rangle = \langle \psi_I | \psi_I \rangle + \langle \psi_{II} | \psi_{II} \rangle + 2 |\langle \psi_I | \psi_{II} \rangle| \cos(\chi - \phi)$$

The offset of the oscillation measures the phase ϕ in $e^{i\phi} = \Phi(\langle \psi_I || \psi_{II} \rangle)$

Start with a pure spinor state

$$|\psi^{+}\rangle = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix} \rightarrow U$$
-evolve \rightarrow compare with $|\psi^{-}\rangle = \begin{pmatrix} -\sin(\theta/2) \\ \cos(\theta/2) \end{pmatrix}$

Trick: take $|\psi_I\rangle = |\psi^-\rangle\langle\psi^-|U^{-1}|\psi^+\rangle$ and $|\psi_{II}\rangle = |\psi^-\rangle\langle\psi^-|U|\psi^+\rangle$, with $U=\alpha$ -rotation along \hat{z} .

Result: $I = 2\sin^2(\theta)\sin^2(\alpha/2)[1 + \cos(\chi - \pi)]$

The off-diagonal phase of $\gamma_{12} = \pi$ should appear as complete anti-phase of the recombined intensity I, independent of α -rotation.

The setup for neutron interferometry

EXPERIMENTAL EVIDENCE 2 – quantum billiard

2D deformable rectangular microwave cavity

[Lauber Wiedenhammer Dubbers PRL 1990]

Parallel transport in quantum billard: follow nodal structure adiabatically along the distortion path, and keep phase real. Open-path result: at $\theta = \pi$, $\psi_1 \longleftrightarrow \psi_3$, state 2 changes sign.

Coordinate transformation for the deformed domain

$$x = u \left(1 + v \frac{\Delta a}{ab} \right)$$

$$y = v \left(1 + u \frac{\Delta b}{ab} \right)$$

rectangular domain for u and v $0 \le u \le a$ $0 \le v \le b$

$$0 \le u \le a \quad 0 \le v \le 1$$

Laplace operator in (u, v) coordinates

$$\nabla^2 = \partial_x^2 + \partial_y^2 \longrightarrow \nabla^2 = \overline{(\partial_u, \partial_v)} \begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} \partial_u \\ \partial_v \end{pmatrix} + D$$

where A, B, C, D are complicate functions of u, v, a, b, Δa , Δb

[see D.E. Manolopoulos and M.S. Child, Phys. Rev. Lett. 82, 2223 (1999)]

Approximate treatment:

degenerate perturbation theory in
$$\vec{q} = (\Delta a, \Delta b) = q(\cos \theta, \sin \theta)$$
:

$$H(\vec{q}) = -\text{Laplacian} = H^{(0)} + q H^{(1)}(\theta) + q^2 H^{(2)}(\theta) + \dots$$

unperturbed basis:

$$\psi_{(n_x,n_y)}(u,v) = \frac{2}{\sqrt{ab}}\sin(\frac{n_x u}{a})\sin(\frac{n_y v}{b})$$

Interesting case: degenerate multiplets

example: if $a/b = \sqrt{3}$ "geometrical degeneracies" appear, for

$$(n_x, n_y) = (2, 4), (5, 3), \text{ and } (7, 1) :$$

$$H^{(0)} \rightarrow \text{const} = 52\pi^2/3$$

$$H^{(1)} \rightarrow a \ 3 \times 3 \ \text{matrix} = \cos \theta \ F + \sin \theta \ F'$$

$$H^{(2)} \rightarrow \langle \psi_i | H^{(2)} | \psi_j \rangle + \sum_{k \neq 1,2,3} \frac{\langle \psi_i | H^{(1)} | \psi_k \rangle \langle \psi_k | H^{(1)} | \psi_j \rangle}{E_i - E_k}$$

Perturbation theory

VS.

Observed

for the path $\theta = 0 \longrightarrow \pi$

observed $\gamma_2 = -1$, observed $\gamma_{13} = 1$,

while 1st order gives $\gamma_2 = 1$ while 1st order gives $\gamma_{13} = -1$

Why?

eigenvalues of first-order term $H^{(1)}(\theta)$: almost degeneracies in 4 directions

First order fails completely in green region in figure

General observations on quantum billard experiments

- Satellite degeneracies (degeneracies within the range of validity of perturbation theory, involving minor components on states outside the multiplet) do often appear
- Whenever in a degenerate multiplet one state is *near* some states [so that second-order coupling is large] for which selection rule $(-1)^{n_x+n'_x}=(-1)^{n_y+n'_y}=1$ makes first-order coupling vanish, and at the same time it is far from all remaining states [so that $\Delta E^{(1)}$ is small], one is likely to find satellite degeneracies.
- Wide scope: Laplacian

SUMMARY

Off-diagonal geometric phases: [PRL 85, 3067 (2000)]

- only appear in open-path evolution
- complete the set of phase infos of diagonal phases
- in the case of permutations are the only available info
- seen in **neutron-spin interferometry** [PRA **65**, 052111 (2002)]
 - trick of forward-backward evolution
 - trivial case: $\gamma_{12} \equiv -1$
- seen in "quantum billiards" [PRL **85**, 1585 (2000)]
 - discovered previously overlooked *satellite* degeneracies
 - through higher-order expansion + exact numerical solution
- to be seen & used in quantum computers [??? ??, ???? (????)]

 http://www.mi.infm.it/manini