
Facoltà di Scienze e Tecnologie
Laurea Triennale in Fisica

Simulated run in the rain

Relatore: Prof. Nicola Manini

Cristian Angelo Crespi
Matricola n◦ 964503
A.A. 2022/2023

Codice PACS: 92.60.jf

Simulated run in the rain
Cristian Angelo Crespi

Dipartimento di Fisica, Università degli Studi di Milano,
Via Celoria 16, 20133 Milano, Italia

February 23, 2024

Abstract

The optimal speed for running in the rain and getting soaked as little as
possible has long been discussed in the physics and mathematics community.
In practice, however, so far the human body has always been represented as a
simple geometric shape such as a parallelepiped or a cylinder. In this work we use
numerical simulations address this problem for more complex and dynamically
evolving shapes that can represent the human body with an accuracy never reached
before in this field.

Advisor: Prof. Nicola Manini

Contents

1 Introduction 3

2 The model 4
2.1 Analytic results . 7

2.1.1 The sphere . 7
2.1.2 The parallelepiped . 8
2.1.3 The capsule . 9

2.2 The human body . 11

3 Technical implementation 17
3.1 Projection surface . 17
3.2 Static bodies . 19
3.3 Body dynamics . 20
3.4 Code validation . 22

4 Results 28
4.1 Error analysis . 28
4.2 Optimal velocity . 31

5 Discussion and Conclusion 37

References 38

2

1 Introduction

The question of how fast it is convenient to run or walk in the rain is as old as time,
and has proven to be a recurring topic in the mathematics and physics community
in the last 50 years. Despite the few articles on the topic and the large time span in
which they have been produced there have been precious little improvements upon
the results first derived by Schwartz and Deakin [1] back in 1973. In that article an
orthogonal parallelepiped (from here on we will refer to orthogonal parallelepipeds
simply as parallelepipeds as done in previous works on the topic) with sides parallel to
the axes is used to approximate a human body running on a straight path in the presence
of rain and wind, leading the following results: in the presence of a strong enough
tailwind an optimal speed exists, and it equals the component of the rain velocity
along the direction of the path; without a tailwind it is always convenient to run faster,
although with diminishing returns. Since then a variety of simple geometric shapes
have been considered: spheres [2, 3], cylinders [3], ellipsoids [2], plane surfaces [3]
and parallelepipeds with generic orientations [3]. The results of these investigations
show that the shape considered can change the results considerably: in the presence
of a strong enough tailwind a finite optimal speed always exists, but its value depends
on the shape considered, and for some shapes an optimal speed can exist even without
wind or in the presence of headwind. Because of these discordant results the need for
a better approximation of the human body becomes apparent, and the only reason this
has not been done yet is the difficulty of deriving analytical results for complex shapes.
In the present work we will address this problem by means of a numerical approach. A
numerical approach to the problem has been already tried [4], but it too only modeled
the human body as a parallelepiped, and its focus was instead on comparing modeling
rain as raindrops placed in a cubic lattice as opposed to the more realistic case in which
the raindrops are generated at random positions; as expected, the two models agree
well.

In this work we consider a model of the body consisting of multiple elementary
three-dimensional geometric shapes that move relative to each other, which we will refer
to as body parts. We use spheres, parallelepipeds and capsules to model individual
body parts. A capsule, also sometimes called a spherocylinder, is an elementary three-
dimensional shape consisting in a cylinder with hemispherical ends. Capsules had
never been studied before in this context so we had to derive an explicit analytical
solution.

3

2 The model

We model a person running along a straight path under rain and wind. We want to
determine is the optimal speed at which she/he should move such that she/he catches
the least possible amount of rain. We shall assume the following:

1. The ground is horizontal.

2. The path is rectilinear.

3. The raindrops all have the same size and are densely and uniformly distributed
in space.

4. The wind velocity is constant and the raindrops have reached their terminal
velocity in the wind.

5. The wind adds a horizontal component to the velocity of the rain.

6. The motion of the body consists of a translation at constant speed along the path
plus a periodic relative motion that is generally unique to each body part but
shares the same period 𝑇 .

7. The relative velocity of the body parts due to their periodic motion is negligible
compared to the velocity of the rain.

8. The path is long enough that periods of the periodic motions of the body parts
are small compared to the time 𝑡 𝑓 taken to traverse the path (𝑇 ≪ 𝑡 𝑓).

9. All involved speeds are negligible compared to the speed of light, so that the
nonrelativistic limit and Galilean transformations apply throughout.

In the rest frame of reference, the 𝑥 axis is aligned with the path of the body and the 𝑧

axis is be the vertical axis. According to assumptions 1, 2 and 6 the body is translating
with a velocity v𝑏 = 𝑣𝑏 ê𝑥 , and the rain has a velocity v𝑟 . The 𝑧 component of v𝑟 is
negative, and we refer to its absolute value as the falling velocity 𝑣 𝑓 𝑎𝑙𝑙 . We refer to
the value of the 𝑦 component of v𝑟 as the ”crosswind” 𝑣𝑐𝑟𝑜𝑠𝑠. Since all the bodies we
take into consideration are symmetric under the transformation 𝑦 → −𝑦 we consider
only positive values of 𝑣𝑐𝑟𝑜𝑠𝑠. We refer to the value of the 𝑥 component of v𝑟 as the
”tailwind” 𝑣𝑡𝑎𝑖𝑙 . We call 𝑑 = 𝑣𝑏𝑡 𝑓 the total length of the path traversed.

The water absorbed by the traveler 𝑊 , measured as the total volume of water that
has hit her/him at the end of the walk, is equal to the number of raindrops hit times the
volume of each drop. Thanks to our assumption 3 we can safely define a dimensionless
”rain density” 𝜌𝑟𝑎𝑖𝑛 = 𝑁𝑑𝑟𝑜𝑝𝑉𝑑𝑟𝑜𝑝/𝑉 , where 𝑁𝑑𝑟𝑜𝑝 is the number of raindrops contained

4

in a certain volume 𝑉 , and 𝑉𝑑𝑟𝑜𝑝 is the volume of a single drop. In short 𝜌𝑟𝑎𝑖𝑛 is the
ratio between the amount of rain contained in a volume and that same volume, i.e. the
volume fraction of liquid water freely falling in the atmosphere. Let us consider the
frame of reference in which the raindrops are still. In this frame the velocity of the
body is:

v𝑟𝑒𝑙 = v𝑏 − v𝑟 . (1)

The stationary raindrops inside the volume of space that our body passes through,
which we call𝑉𝑏, are swept up by the body motion and contribute to the water absorbed
𝑊 . We can then use the following relation to evaluate the wetness: 𝑊 = 𝜌𝑟𝑎𝑖𝑛𝑉𝑏.
Since 𝜌𝑟𝑎𝑖𝑛 is constant in the walk in the rain our problem reduces to evaluating and
minimizing 𝑉𝑏. As derived in Ref. [2] for a body whose only movement is a rigid
translation 𝑉𝑏 is given by the following formula:

𝑉𝑏 (v𝑟𝑒𝑙) = 𝑆𝑏 (v𝑟𝑒𝑙)
∥v𝑟𝑒𝑙 ∥
𝑣𝑏

𝑑. (2)

𝑆𝑏 (v𝑟𝑒𝑙) is the area of the projection of the body on a plane perpendicular to v𝑟𝑒𝑙 . The
only non-trivial part of the problem is then the determination of the dependence of
𝑆𝑏 on v𝑟𝑒𝑙 . Note that generally lim𝑣𝑏→+∞𝑉𝑏 (v𝑟𝑒𝑙) ≠ 0; as 𝑣𝑏 approaches infinity, v𝑟𝑒𝑙
approaches 𝑣𝑏 ê𝑥 , so we get:

lim
𝑣𝑏→+∞

𝑉𝑏 (v𝑟𝑒𝑙) = 𝑆𝑏 (ê𝑥) 𝑑. (3)

This shows that even if there is no finite optimal speed there is a minimum wetness that is
not avoidable by going faster, which is independent of the rain velocity 𝑣𝑟 . Furthermore
since lim𝑣𝑏→0+ 𝑆𝑏 (v𝑟𝑒𝑙) > 0 (which is a reasonable assumption for a human body) then
𝑉𝑏 (v𝑟𝑒𝑙) diverges to infinity as 𝑣𝑏 tends to 0 because of the 𝑣𝑏 term in the denominator
in Eq. (2), so there usually is no upper limit to the wetness at small speed.

We now generalize these findings for a dynamical body. Since the velocity of
the body parts is small compared to the velocity of the rain 7 we can approximate the
relative velocity of the body parts with the relative velocity of the whole body v𝑟𝑒𝑙 . This
way we can write the area of the projection of the whole body as depending only on the
relative velocity of the whole body and of the instantaneous orientation of each body
part, which only depend on time for a set body: 𝑆𝑏̃ (v𝑟𝑒𝑙 , 𝑡). We can then generalize
Eq.(2) by considering that 𝑑/𝑣𝑏 = 𝑡 𝑓 and substituting 𝑆𝑏 (v𝑟𝑒𝑙) 𝑡 𝑓 with an integral of
𝑆𝑏̃ (v𝑟𝑒𝑙 , 𝑡) over [0, 𝑡 𝑓]:

𝑉𝑏 = ∥v𝑟𝑒𝑙 ∥
∫ 𝑡 𝑓

0
𝑑𝑡 𝑆𝑏̃ (v𝑟𝑒𝑙 , 𝑡). (4)

Furthermore since the time spent in the path is long compared to the period of the
function 𝑆𝑏̃ (v𝑟𝑒𝑙 , 𝑡) we can approximate it with its time average over the period 𝑇 . For

5

Figure 1: Example with an ellipsoid as the body. Its orthogonal
projection on the plane perpendicular to v𝑟𝑒𝑙 is an elliptic disk
with area 𝑆𝑏 and𝑉𝑏 is the volume of the resulting elliptic cylinder.
Original image from Ref. [2].

a dynamic body we can then employ the time average

𝑆𝑏 (v𝑟𝑒𝑙) =
1
𝑇

∫ 𝑇

0
𝑑𝑡 𝑆𝑏̃ (v𝑟𝑒𝑙 , 𝑡) (5)

in Eq. (2), which is thus extended to dynamical bodies too, provided that assumptions
6, 7, and 8 are satisfied.

Note that the results are invariant under the transformation v𝑟𝑒𝑙 → −v𝑟𝑒𝑙 , since a
plane perpendicular to v𝑟𝑒𝑙 is also perpendicular to −v𝑟𝑒𝑙 . Since we will not be able to
solve the dynamic body analytically we will approximate 𝑆𝑏 (v𝑟𝑒𝑙) with a discrete time
average:

𝑆𝑏 (v𝑟𝑒𝑙) ≃
1
𝑁

𝑁−1∑︁
𝑖=0

𝑆𝑏̃

(︃
v𝑟𝑒𝑙 , 𝑖

𝑇

𝑁

)︃
. (6)

Furthermore, since 𝑑 is a given, we will evaluate and minimize the ratio of wetting
volume to path length instead, or wetness for short, which can be written as:

𝑅𝑏 (v𝑟𝑒𝑙) =
𝑉𝑏 (v𝑟𝑒𝑙)

𝑑
= 𝑆𝑏 (v𝑟𝑒𝑙)

∥v𝑟𝑒𝑙 ∥
𝑣𝑏

, (7)

which for a given v𝑟 can be rewritten using Eq. (1) and v𝑏 = 𝑣𝑏 ê𝑥 as:

𝑅𝑏 (𝑣𝑏) = 𝑅𝑏 (𝑣𝑏 ê𝑥 − v𝑟), (8)

Considering Eq. (3) we can also write:

lim
𝑣𝑏→+∞

𝑅𝑏 (𝑣𝑏) = 𝑆𝑏 (ê𝑥). (9)

6

The optimal velocity 𝑣𝑜𝑝𝑡 we are looking for is then the value of 𝑣𝑏 that minimizes
𝑅𝑏 (v𝑟𝑒𝑙) for a given v𝑟 . For the sake of convenience we will use 𝑣 𝑓 𝑎𝑙𝑙 as a unit of
measure for all velocities in this problem. For 𝑅𝑏 we will adopt SI units.

2.1 Analytic results

The elementary geometric shapes we adopt as building blocks for the human body are
spheres, parallelepipeds and capsules. To verify if our numerical code works properly
it is useful to check numerical results against the analytic solutions. Furthermore,
we need to derive the appropriate formulas for the projection of the adopted building
blocks onto arbitrary planes. First we define the orthogonal projection onto planes
perpendicular to a generic vector v. For simplicity’s sake we consider planes passing
through the origin. The projector operator 𝑃v onto a plane through the origin and
perpendicular to v acts on vector a as follows [6]:

𝑃v(a) = a − a · v
v · v

v. (10)

Considering bodies 𝐵 defined as sets of points in R3 we define their projection as
𝑃v(𝐵) := {𝑃v(b) : b ∈ 𝐵}.

2.1.1 The sphere

The sphere is the easiest body to work with since its projection does not depend on v:
the orthogonal projection of a sphere of radius 𝑟 and center c on any plane is a disk
with radius 𝑟 and center 𝑃v(c) [2, 3]. Obviously, its area is, 𝑆𝑠 = 𝜋𝑟2. Plugging this
result into Eq. (7), we obtain the following formula for 𝑅𝑠 (v𝑟𝑒𝑙):

𝑅𝑠 (v𝑟𝑒𝑙) = 𝜋𝑟2 ∥v𝑟𝑒𝑙 ∥
𝑣𝑏

. (11)

Using Eq. (1) and v𝑏 = 𝑣𝑏 ê𝑥 we can write 𝑅𝑠 (𝑣𝑏) for any given v𝑟 :

𝑅𝑠 (𝑣𝑏) = 𝜋𝑟2 ∥(𝑣𝑏 ê𝑥 − v𝑟)∥
𝑣𝑏

. (12)

Obviously as 𝑣𝑏 → +∞ we get:

lim
𝑣𝑏→+∞

𝑅𝑠 (𝑣𝑏) = 𝜋𝑟2. (13)

As derived in Refs. [2, 3], for a sphere the condition for 𝑣𝑜𝑝𝑡 to exist finite is simply
𝑣𝑡𝑎𝑖𝑙 > 0. If there is any tailwind at all there is an optimal velocity, and its value is:

𝑣𝑜𝑝𝑡 =
∥v𝑟 ∥2

𝑣𝑡𝑎𝑖𝑙
. (14)

7

2.1.2 The parallelepiped

As derived in Refs. [1, 3], when dealing with a parallelepiped one only needs to
consider the faces that get wet, which are one to three depending on orientations of the
parallelepiped and of v. A parallelepiped is defined by its center c and its three sides s1,
s2 and s3, where s𝑖 · s 𝑗 = 0 for 𝑖, 𝑗 = 1, 2, 3 and 𝑖 ≠ 𝑗 . The 6 points corresponding to the
centers of its 6 faces are p±

𝑖
= c± s𝑖/2. We consider the surface of a face as pointing out

of the parallelepiped. Then the face with center p±
𝑖

will have surface S±
𝑖
= ±

∥︁∥︁s 𝑗 × s𝑘
∥︁∥︁ s𝑖̂,

with s𝑖̂ = s𝑖/∥s𝑖∥ and 𝑖, 𝑗 , 𝑘 all different. In the system of reference in which the rain
is still, the parallelepiped translates with velocity v𝑟𝑒𝑙 , and it is easy to see that a face
S±
𝑖

gets wet if and only if the velocity of the body is positive in the direction the face
is pointing to, i.e. iff S±

𝑖
· v𝑟𝑒𝑙 > 0, which is equivalent to ±s𝑖 · v𝑟𝑒𝑙 > 0. We can

immediately see that if S±
𝑖

gets wet then S∓
𝑖

does not, and iff s𝑖 · v𝑟𝑒𝑙 = 0 neither of 𝑆±
𝑖

gets wet, so at most 3 faces can get wet. Since s𝑖 are 3 orthogonal vectors, they form a
complete basis of R3, and since v𝑟𝑒𝑙 is never a null vector, then s𝑖 · v𝑟𝑒𝑙 ≠ 0 for at least
one 𝑖.

We now want to evaluate the projections of the wet faces on a plane perpendicular
to v𝑟𝑒𝑙 . The projection of a face is a parallelogram with as vertices the projections of
the vertices of the face, and then as sides the projections of the sides of the face. The
area of said parallelogram is:

𝐴𝑖 (v𝑟𝑒𝑙) =
∥︁∥︁(s 𝑗 × s𝑘) · v̂𝑟𝑒𝑙

∥︁∥︁, (15)

with v̂𝑟𝑒𝑙 = v𝑟𝑒𝑙/∥v𝑟𝑒𝑙 ∥. Notice that if we have three wet faces S1, S2, S3 each has two
sides in common with too others and they all share the vertex connecting the shared
sides. The projection of those three faces will then consist of three parallelograms that
each share two sides and a vertex as the original faces. This results in an irregular
hexagon with an area equal to the sum of the areas of the 3 composing parallelograms.
Its area, which corresponds to 𝑆𝑝 (v𝑟𝑒𝑙) then is:

𝑆𝑝 (v𝑟𝑒𝑙) = ∥S1 · v̂𝑟𝑒𝑙 ∥ + ∥S2 · v̂𝑟𝑒𝑙 ∥ + ∥S3 · v̂𝑟𝑒𝑙 ∥, (16)

with S𝑖 = s 𝑗 × s𝑘 . This formula holds even if less than three faces get wet since if
s𝑖 · v𝑟𝑒𝑙 = 0 then

∥︁∥︁(s 𝑗 × s𝑘) · v𝑟𝑒𝑙
∥︁∥︁ = 0, indicating that the contribution by degenerate

faces that do not get wet vanishes. We can then use Eq. (7) find 𝑅𝑝 (v𝑟𝑒𝑙):

𝑅𝑝 (v𝑟𝑒𝑙) =
[︄ 3∑︁
𝑖=1

∥S𝑖 · v𝑟𝑒𝑙 ∥
]︄
∥v𝑟𝑒𝑙 ∥
𝑣𝑏

. (17)

Using Eq. (1) and v𝑏 = 𝑣𝑏 ê𝑥 we can write 𝑅𝑝 (𝑣𝑏) for any given v𝑟 :

𝑅𝑝 (𝑣𝑏) =
[︄ 3∑︁
𝑖=1

∥S𝑖 · (𝑣𝑏 ê𝑥 − v𝑟)∥
]︄
∥𝑣𝑏 ê𝑥 − v𝑟 ∥

𝑣𝑏
. (18)

8

And as 𝑣𝑏 → +∞ we get:

lim
𝑣𝑏→+∞

𝑅𝑝 (𝑣𝑏) =
3∑︁
𝑖=1

∥S𝑖 · ê𝑥 ∥. (19)

Despite the fact that the parallelepiped is the first solid to ever be considered as a model
for the human body, analytical solutions have only been derived for parallelepipeds
with sides parallel to the axes. In this case we call 𝑆𝑥 , 𝑆𝑦 and 𝑆𝑧 the area of the face
perpendicular to the 𝑥, 𝑦 and 𝑧 axis respectively. Then, as derived in Refs. [1, 3], 𝑣𝑜𝑝𝑡
exists finite under the following condition:

𝑣𝑡𝑎𝑖𝑙 >
𝑆𝑦 |𝑣𝑐𝑟𝑜𝑠𝑠 | + 𝑆𝑧 𝑣 𝑓 𝑎𝑙𝑙

𝑆𝑥
. (20)

If this condition is satisfied 𝑣𝑜𝑝𝑡 is always equal to 𝑣𝑡𝑎𝑖𝑙 . Immediately we can notice
how using a different type of solid to model the human body can change the results:
both the existence condition for 𝑣𝑜𝑝𝑡and its value are different for the sphere and the
parallelepiped. The only constant is the presence of a tailwind as a necessary condition
for the existence of 𝑣𝑜𝑝𝑡 .

2.1.3 The capsule

As stated before, while spheres and parallelepipeds have already been studied in this
context, capsules (see Fig. 2) are a new shape, so we provide here a simple analytical
solution. A capsule is defined as follows [5]: let 𝐿 be a line segment in R3 and 𝑟 a
positive real number. The capsule with axis 𝐿 and radius 𝑟 is the set of points whose
distance from 𝐿 is smaller or equal to 𝑟. The same capsule can also be defined as
the Minkowski sum between 𝐿 and a ball centered at the origin with radius 𝑟. Given
two sets of vectors 𝐴 and 𝐵 in Euclidean space, their Minkowski sum is the set of
points 𝐴 + 𝐵 := {a + b : a ∈ 𝐴, b ∈ 𝐵} [7]. We now proceed to find the orthogonal
projection of a capsule 𝐶 on a plane perpendicular to a generic vector v. We show that
𝑃v distributes over the Minkowski sum, i.e. 𝑃v(𝐴 + 𝐵) = 𝑃v(𝐴) + 𝑃v(𝐵). Using Eq.
(10):

𝑃v(a + b) = a + b − (a + b) · v
v · v

v = a − a · v
v · v

v + b − b · v
v · v

v = 𝑃v(a) + 𝑃v(b), (21)

𝑃v(𝐴 + 𝐵) = {𝑃v(a + b) : a ∈ 𝐴, b ∈ 𝐵} =
= {𝑃v(a) + 𝑃v(b) : a ∈ 𝐴, b ∈ 𝐵} =

= {a′ + b′ : a′ ∈ 𝑃v(𝐴), b′ ∈ 𝑃v(𝐵)} = 𝑃v(𝐴) + 𝑃v(𝐵).
(22)

Incidentally, note that while we are only considering vectors in R3 and a surface in R2

equations (21) and (22) hold up for vectors in the Euclidean space E𝑛 and hypersurfaces

9

Figure 2: A capsule with axis 𝐿 and radius 𝑟.

Figure 3: A stadium with axis 𝐿 and radius 𝑟.

in E𝑛−1 for any 𝑛. We know that the projection of a line segment 𝐿 defined by its two
endpoints l1 and l2 is the line segment 𝐿̂ = 𝑃v(𝐿) with endpoints 𝑃v(l1) and 𝑃v(l2),
and that the projection of a sphere 𝑆 with radius 𝑟 centered at the origin is a disk 𝑆̂ with
radius 𝑟 also centered at the origin and laying on the projection plane. The projection of
our capsule 𝐶 = 𝐿 + 𝑆 then is 𝐶̂ = 𝐿̂ + 𝑆̂. The Minkowski sum between a line segment
and a disk is the stadium [8], also called sausage body, a two-dimensional geometric
shape defined exactly like a capsule, but in 2D. The stadium with axis 𝐿 and radius 𝑟 is
the set of points whose distance from 𝐿 is smaller or equal to 𝑟. Revolving a stadium
around 𝐿 results in a capsule. An example of a stadium with radius 𝑟 and axis 𝐿 can
be seen in Fig. 3. The area of a stadium can be easily derived considering that it is
made up of two half disks with radius 𝑟 plus a rectangle with sides 2𝑟 and 𝑙, where by 𝑙

we indicate the length of 𝐿, i.e. the Euclidean distance between its two endpoints. The
area is:

𝐴 = 𝜋𝑟2 + 2𝑟𝑙. (23)

10

The stadium we get from projecting a capsule then has the same radius 𝑟, and 𝐿̂ = 𝑃v(𝐿).
Defining Δl := l2 − l1 we can find the length of 𝐿̂ as:

𝑙 = ∥𝑃v(l2) − 𝑃v(l1)∥ = ∥𝑃v(Δl)∥ =
∥︁∥︁∥︁∥︁Δl − Δl · v

v · v
v
∥︁∥︁∥︁∥︁. (24)

We now have all we need to calculate the projection 𝑆𝑐 of our capsule on a plane
perpendicular to the relative velocity of the rain v𝑟𝑒𝑙 . Using equations (23) and (24) we
write:

𝑆𝑐 (v𝑟𝑒𝑙) = 𝜋𝑟2 + 2𝑟
∥︁∥︁∥︁∥︁Δl − Δl · v𝑟𝑒𝑙

v𝑟𝑒𝑙 · v𝑟𝑒𝑙
v𝑟𝑒𝑙

∥︁∥︁∥︁∥︁. (25)

Substituting in Eq. (7) gives us the ratio 𝑅𝑐:

𝑅𝑐 (v𝑟𝑒𝑙) =
[︃
𝜋𝑟2 + 2𝑟

∥︁∥︁∥︁∥︁Δl − Δl · v𝑟𝑒𝑙
v𝑟𝑒𝑙 · v𝑟𝑒𝑙

v𝑟𝑒𝑙
∥︁∥︁∥︁∥︁]︃ ∥v𝑟𝑒𝑙 ∥

𝑣𝑏
. (26)

Using Eq. (1) and v𝑏 = 𝑣𝑏 ê𝑥 we can write 𝑅𝑐 (𝑣𝑏) for any given v𝑟 :

𝑅𝑐 (𝑣𝑏) =
[︃
𝜋𝑟2 + 2𝑟

∥︁∥︁∥︁∥︁Δl − Δl · (𝑣𝑏 ê𝑥 − v𝑟)
(𝑣𝑏 ê𝑥 − v𝑟) · (𝑣𝑏 ê𝑥 − v𝑟)

(𝑣𝑏 ê𝑥 − v𝑟)
∥︁∥︁∥︁∥︁]︃ ∥(𝑣𝑏 ê𝑥 − v𝑟)∥

𝑣𝑏
.

(27)
And as 𝑣𝑏 → +∞ we get:

lim
𝑣𝑏→+∞

𝑅𝑐 (𝑣𝑏) = 𝜋𝑟2 + 2𝑟 ∥Δl − (Δl · ê𝑥) ê𝑥 ∥. (28)

2.2 The human body

Considering the wide variety of body shapes that human beings can exhibit it would
seem like an impossible task to find general results for them, and it probably is, so in
this work we limit ourselves to building one specific model of a human body. To make
sure that our model can properly approximate a real human we have decided to build
it using the Vitruvian Man, by Leonardo da Vinci [9] as a guideline. By analysing the
text accompanying the drawing and measuring the drawing itself1 we find the following
proportions to follow, given a body with a total height ℎ:

• The head is ℎ/8 tall.

• The neck is ℎ/24 tall and ℎ/14 thick.

• The torso is ℎ/3 tall, ℎ/6 wide and ℎ/12 thick.

• The shoulders are each ℎ/24 long and ℎ · 0.06 thick.

• The upper arms are each ℎ/8 long and ℎ/20 thick.

1We measured a scan of the original drawing using the software ImageJ [10].

11

Figure 4: Our model of the human body overlayed on the Vitru-
vian Man by Leonardo da Vinci. The colors and patterns denote
the shape of the base body part: solid blue for sphere, checkered
green and black for parallelepiped, and red and black stripes for
capsule.

• The forearms (including the hands) are each ℎ/4 long and ℎ/20 thick.

• The thighs are each ℎ/4 long and ℎ/12 thick.

• The calves are each ℎ/4 long and ℎ/20 thick.

• The feet are each ℎ/7 long and ℎ/30 thick.

We adopt ℎ = 1.68 m as a plausible height for a person. While the total wetting scales
as ℎ2, the optimal speed should not depend on the size of the body but only on its shape.

As anticipated we built our body using as base shapes spheres, parallelepipeds
and capsules. For the torso we use a parallelepiped with sides s1 = (1/12, 0, 0) ℎ,
s2 = (0, 1/6, 0) ℎ, s3 = (0, 0, 1/3) ℎ. For the neck we use a capsule of radius 𝑟 = 1/24 ℎ

and length ∥Δl∥ = 5/48 ℎ. The head is modeled with a sphere of radius 𝑟 = 1/16 ℎ.
The neck connects the torso to the head: one endpoint l1 is placed on the center of the
top face of the torso, while the other coincides with the center of the head, i.e. l2 = c.
Both the neck and the head are still relative to the torso. The shoulders, upper arms,
forearms, thighs, calves, and feet are all modeled by capsules with various radii and
lengths. The shoulders have length ∥Δl∥ = 1/24 ℎ and radius 𝑟 = 0.03 ℎ. Each of

12

them has one of its endpoints situated on one of the lateral faces of the torso, 0.03 ℎ

below the middle of the top side of the face, and their axis is perpendicular to said face.
The second endpoint of each shoulder coincides with the first endpoint of one of the
two capsules of length ∥Δl∥ = 1/8 ℎ and radius 𝑟 = 1/40 ℎ that represent the upper
arms. The second endpoint of each upper arm coincides with the first endpoint of one
of the two capsules of length ∥Δl∥ = 9/40 ℎ and radius 𝑟 = 1/40 ℎ that represent the
forearms. The shoulders are still relative to the torso during both walking and running.
The upper arms can rotate around the endpoint connecting them to the shoulders. This
movement is shared by the forearms which can further rotate around the endpoint they
share with the upper arms. The thighs have length ∥Δl∥ = 1/4 ℎ and radius 𝑟 = 1/24 ℎ.
They both have one of their endpoints on the bottom face of the torso. Their other
endpoint coincides with the first endpoint of the two capsules of length ∥Δl∥ = 9/40 ℎ

and radius 𝑟 = 1/40 ℎ that represent the calves. The feet have length ∥Δl∥ = 23/210 ℎ

and radius 𝑟 = 1/60 ℎ. They are connected to the calves by one of their endpoint,
positioned 𝑟𝑐𝑎𝑙 𝑓 − 𝑟 𝑓 𝑜𝑜𝑡 = 1/120 ℎ below the endpoint of each calf, so that the calf
does not protrude below the foot. The thighs can rotate along with the calves and feet
around the endpoint connecting them to the torso. The calves and the feet can rotate
together around the endpoint connecting the calves to the thighs, and the feet can rotate
around the endpoint connecting them to the calves. A direct comparison between our
model of the body and the Vitruvian Man is shown in Fig. 4. The numerical details of
our body are available on GitHub [15].

Given the model details, we now describe how it moves. We study two regimes
of motion: walking and running. We model both walking and running with periodic
rototranslations of the limbs around their respective joints. For simplicity’s sake we
approximate the periodic time evolution of the angles 𝜃 𝑗 of the joints as sinusoids:

𝜃 𝑗 (𝑡) =
𝜃𝑚𝑎𝑥 + 𝜃𝑚𝑖𝑛

2
+ 𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

2
sin

(︂
2𝜋

𝑡

𝑇
+ 𝜙

)︂
. (29)

To make sure our dynamic body resembles a real human being we refer to articles on the
biomechanics of walking and running for the amplitudes and relative phases of these
sinusoids. By convention, we consider for each joint the angle 𝜃 𝑗 = 0 when the body is
standing with straight legs and the arms parallel to the body, feet perpendicular to the
legs. We further assume that 𝜃 𝑗 > 0 when a limb moves forward along the direction of
motion of the body:

• During walking 𝜃ℎ𝑖𝑝 ranges from 𝜃𝑚𝑖𝑛 = −10° to 𝜃𝑚𝑎𝑥 = 30°[12], while during
running 𝜃ℎ𝑖𝑝 ranges from 𝜃𝑚𝑖𝑛 = −30° to 𝜃𝑚𝑎𝑥 = 30°[13].

• During both walking and running the angle of the leg at the knee 𝜃𝑘𝑛𝑒 has a relative
phase of around −𝜋/2 with 𝜃ℎ𝑖𝑝. During walking 𝜃𝑘𝑛𝑒 ranges from 𝜃𝑚𝑖𝑛 = −60°

13

to 𝜃𝑚𝑎𝑥 = 0°[12], while during running 𝜃𝑘𝑛𝑒 ranges from 𝜃𝑚𝑖𝑛 = −120° to
𝜃𝑚𝑎𝑥 = −15°[13].

• During both walking and running the angle of the ankle 𝜃𝑎𝑛𝑘 is in antiphase
with 𝜃𝑘𝑛𝑒.During walking 𝜃𝑎𝑛𝑘 ranges from 𝜃𝑚𝑖𝑛 = −5° to 𝜃𝑚𝑎𝑥 = 20°[12], while
during running 𝜃𝑎𝑛𝑘 ranges from 𝜃𝑚𝑖𝑛 = −30° to 𝜃𝑚𝑎𝑥 = 25°[13].

• During both walking and running the angle of the arm at the shoulder 𝜃𝑠ℎ𝑜 is in
counterphase with the angle of the same side leg at the hip 𝜃ℎ𝑖𝑝. During walking
𝜃𝑠ℎ𝑜 ranges from 𝜃𝑚𝑖𝑛 = −5° to 𝜃𝑚𝑎𝑥 = 20°, while during running 𝜃𝑠ℎ𝑜 ranges
from 𝜃𝑚𝑖𝑛 = −30° to 𝜃𝑚𝑎𝑥 = 0°[11].

• During both walking and running the angle of the arm at the elbow 𝜃𝑒𝑙𝑏 is in
phase with 𝜃𝑠ℎ𝑜. During walking 𝜃𝑒𝑙𝑏 ranges from 𝜃𝑚𝑖𝑛 = 5° to 𝜃𝑚𝑎𝑥 = 25°, while
during running 𝜃𝑒𝑙𝑏 ranges from 𝜃𝑚𝑖𝑛 = 85° to 𝜃𝑚𝑎𝑥 = 110°[11].

• All the angles formed by limbs on one side of the body are in counterphase with
the angles formed by the corresponding limbs on the opposite side of the body.

• During walking the torso stands straight with the 𝑧 axis, while during running it
forms a constant angle of 8°[14].

Fig. 5 shows the time evolution of the angles 𝜃 𝑗 over a period 𝑇 for walking and
Fig. 6 reports the same quantities for running. Both figures include a visualization of
snapshots of our model during a period. The numerical details of both our walking and
running bodies are provided in GitHub [15].

14

Figure 5: Angles 𝜃 𝑗 of the model parts representing individual
limbs on the right side of the body during walking for one period
𝑇 . Upper images: illustrative snapshots of the resulting human
walking model at intervals 𝑇/8.

15

Figure 6: Same as Fig. 5 but for running instead of walking.

16

3 Technical implementation

The full code is available on GitHub [15]. We wrote the main code for the evaluation of
the numerical results in C++. For data analysis and visualization we use Python. This
section focuses on the C++ main code. We shortly describe the general organization
of the code before delving into more details. As stated before the main objective is
evaluating 𝑅𝑏 for a complex body composed of base bodies. For this purpose, we need
to evaluate the projection of a complex body on an arbitrary plane. To do so we generate
a portion of said plane, project the elementary parts forming the complex body and
evaluate the area of the total projection making sure not to double count overlapping
projections. We then proceed to describe the implementation of the dynamics of the
connected elementary bodies, which are employed to simulate a dynamic model of a
walking/running human being. Note that in the context of the code, unless specified
otherwise, when mentioning vectors we refer to std::vector<double> data struc-
tures, and when mentioning matrices we refer to std::vector<vector<double>>
data structures.

3.1 Projection surface

The general idea is to generate a large number of straight lines parallel to v𝑟𝑒𝑙 . These
lines, which we call rays, are uniformly distributed in space. To evaluate the projected
area, we count how many of these rays intersect the body whose projection we measure.
A single ray can be parameterized as follows:

R(𝜏) = R0 + 𝜏v𝑟𝑒𝑙 , 𝜏 ∈ R. (30)

We call R0 the ”ray origin” of the specific ray. These rays are represented in the code
by the Ray class. Its data members are a vector R0 and a bool Active. R0 contains
the ray origin R0, and Active is a flag describing whether a ray has yet to hit a body
section. Ray also contains a vector V as a static data member: V represents v𝑟𝑒𝑙 , so its
value is the same for each ray. The Ray methods On and Off allow to set Active to be
true and false respectively, and the method IsOn returns the value of Active.

We generate the ray origins on a square lattice laying on the projection plane
perpendicular to v𝑟𝑒𝑙 . The side of the square 𝑑𝑥 determines the precision of our
estimation. Since we want our code to be as efficient as possible we generate the ray
origins only on a portion of the plane where the projection of the body could fall. To
do so for each body whose projection we want to measure we consider a parallelepiped
with sides parallel to the coordinate axes and sufficiently large to fully contain the entire
body. We call this parallelepiped the simulation box. The ray origins are uniformly
placed inside this projected simulation box. As the body is contained in the simulation

17

box, its projection will be contained in the projection of the simulation box. For each
body we consider a different size simulation box, since we want it to be as tight around
the body as possible to minimize the number or rays generated. When considering a
dynamic body the simulation box has to contain the body at all times, as the rays are
generated only once, not each time said body moves.

We implement this with the class ProjSurf. ProjSurf has as data members a
vector of Ray objects rays, a double dx and a matrix H. As shown in Sec. 2.1.2 the
projection of a parallelepiped is an irregular hexagon. H[i], with i = 1, 2, 3, 4, 5, 6,
contains the coordinates of the 6 vertices of the hexagonal projection of the box, while
H[0] contains the coordinates of a vertex of the box that lays inside the projection
surface. The ProjSurf constructor takes as arguments a vector box, a vector vel and
a double Dx. box represents the lengths of the three sides of the simulation box, vel is
v𝑟𝑒𝑙 and Dx is 𝑑𝑥. The constructor first uses the function FindMiddle to find the vertex
of the box shared by the faces of the box that would get wet, and assigns that vertex
to H[0]. Then it calls the function FindHexProj to find the projection of the vertices
of the ”wet faces” onto a plane perpendicular to vel and passing through H[0], and
assigns the points found this way to the remaining elements of H.

Now that we have our hexagonal projection H, we only need to fill it with the ray
origins. To do so we consider two perpendicular unit vectors laying on our projection
plane, u1 and u2. As u1we use the longer vector between H[5]−H[0] and H[3]−H[0].
Since we want u1 to be a unit vector we normalize it after choosing it. We can not just
take H[i] − H[0] with a fixed i this because if the faces of which H[i] is a vertex are
degenerate then H[i] − H[0] = 0. H[5] is a vertex of two faces and H[3] is a vertex
of a third one two vertices that do not share a face, so even if two of the three faces
are degenerate at least one between H[3]− H[0] and H[5]− H[0] is a nonzero vector.
u2 is then derived by normalizing the cross product between u1 and vel, ensuring that
it is perpendicular to both. Then we find maxu1 and maxu2, which are the maximum
distance of H[0] and the projection along respectively u1 and u2 of H[i]. This way we
can safely say that the hexagon defined by H is contained in the rectangle centered on
H[0]with sides 2*maxu1*u1 and 2*maxu2*u2. We generate points on a square lattice
with side 𝑑𝑥 along u1 and u2 inside said rectangle, and we check if they are inside the
hexagon we use the Ray constructor to build a Ray with that point as ray origin R0 and
we add it to rays. To check whether the points lay inside the hexagon we use the bool
function PointIsInsideT. This function considers the triangles with vertices H[0],
H[i] and H[i+1], with H[i+1] = H[1] when 𝑖 = 6; these 6 triangles perfectly cover
the hexagon. Then the function uses barycentric coordinates to determine if the point is
inside each triangle, as shown in section 3.2 of Ref. [16]. If the function finds the point
to be inside any of the triangles it returns true, otherwise it returns false. Having
generated the ray origins we set the direction of the rays with Ray::V = vel.

18

The other main method of ProjSurf is the function BodyProj, which takes as
argument a Body class object and returns the surface of its projection on the projection
plane. The details of the Body class along with its methods are explored in Secs. 3.2
and 3.3. BodyProj counts how many of the rays elements intersects the body by
calling the Body method Check on each Ray, and it returns the number of hitting rays
times dx squared, which corresponds to the area of a single cell of the square lattice of
ray origins. We can also call BodyProj with as optional arguments two doubles tmin
and tmax, and an unsigned int nstep to compute the 𝑆𝑏 of a dynamic body according
to Eq. (6). To do so we use the Body method Move, which when given as argument
a double t moves the body to its configuration at time t. BodyProj moves the Body
at nstep time steps between tmin and tmax, which will typically be the extremes of
one period of motion of the Body, and at each time step counts the number of rays that
intersect the Body, before returning the nstep-average number of hitting rays times dx
squared. We call the quantity 𝑑𝑡 = 𝑇/nstep the time step.

3.2 Static bodies

We define a parent class Body from which all the classes representing the various shapes
inherit. The Body methods that we discuss first are Prime, Check and Anal. Each
derived class has its own implementation of these methods that overrides the original
one, but in general Prime prepares the Body to be checked, Check takes as argument
a Ray and returns whether it intersects the Body, and Anal takes as argument a vector
representing v𝑟𝑒𝑙 and a double representing 𝑣𝑏, and returns the analytical solution 𝑅𝑏.
We divide the checking process into Prime and Check because an efficient way to
check if a Ray from a ProjSurf intersects a base body is to project said body on the
projection surface and then check if the R0 of the ray is inside the projection of the body.
Since we have to check a large number of rays it is then more efficient to first project
the body by calling Prime once, and then call Check for each ray without having to
project the body each time. Check also checks that the ray is active using the Ray
method IsOn, and turns off the ray using the Off method if it finds that it intersects the
body, thus solving the issue of different elementary parts shadowing each other. The
function Prime groups all preliminary operations which are independent of the specific
Ray considered.

Sphere We implement spheres through the Sphere class, derived from Body. Its
additional data members are a vector cent representing the position of its center, a
double rad representing its radius and a vector Hcent representing the projection of
cent on a ProjSurf. As shown in Sec. 2.1.1 the projection of a sphere on a plane
is a disk whose center is the projection of the center of the sphere on the plane and

19

with the same radius as the sphere. Prime simply finds the projection of cent onto
the projection surface and assigns it to Hcent. When called on a Ray, Check returns
true if the distance between R0 and Hcent is less than or equal to rad, and false
otherwise. Anal returns the analytical solution of 𝑅𝑠, Eq. (12).

Parallelepiped We implement parallelepipeds with theParallelepiped class, which
inherits from Body. Its additional data members are a vector cent representing the
position of its center, a matrix side, where side[i] contains the side s𝑖, and a matrix
H analogous to the H data member of ProjSurf. Prime projects the vertices of the
wet faces of the parallelepiped onto the projection surface, setting H[0] equal to the
projection of the vertex shared by all the seen faces, and H[i] equal to the vertices of
the hexagonal projection. Check then uses PointIsInsideT to check if R0 is inside
the hexagon defined by H. Anal returns the analytical solution of 𝑅𝑝, Eq. (18).

Capsule We implement capsules with the Capsule class, derived from Body. Its
additional data members are two vectors, l1 and l1 representing the position of the two
endpoints of its axis, a double rad representing its radius and two vectors, H1 and H2
representing the projection of l1 and l2 on a ProjSurf. As shown in Sec. 2.1.3 the
projection of a capsule on a plane is a stadium whose axis is the projection of the axis
of the capsule and with the same radius as the capsule. Prime computes the projection
of l1 and l2 onto a projection surface and assigns them to H1 and H2. When called on
a Ray, Check uses the function PointSegDist to calculate the distance between R0
and the segment defined by the two endpoints H1 and H2, and then returns true if it is
less or equal to rad, and false otherwise. Anal returns the analytical solution of 𝑅𝑐,
Eq. (27).

Composite object We implement a complex body formed of several elementary
bodies by means of the ManyBody class, also derived from Body. Its additional data
members are a vector of pointers to Body objects called bodies. Calling the Prime
method has the effect of calling Primewith the same arguments on all the Body objects
contained in bodies, preparing all of them to be checked. Similarly when Check is
called on a Ray, it calls Check for all the elements of bodies and returns true if the
Ray intersects any of them.

3.3 Body dynamics

In this section we describe our implementation of the relative movements of the indi-
vidual body element in ManyBody. We need our elementary bodies to move not just
independently but also relative to each other. We accomplish this with the Body data

20

member SubBodies, which is a vector of pointers to Body objects. If we have a Body
A, and the SubBodies of A contains a pointer to another Body B, we say that B is
a sub-body of A, and A is the super-body of B. A sub-body moves in the system of
reference in which its super body is still. As a result, when so if the super-body moves
so do its sub-bodies. For example in both our walking and running man the Capsule
representing the forearm is a sub-body of the Capsule representing the upper arm, so
when the upper arm swings back and forth this movement propagates to the forearm.

We model the movement of each base body as a translation and a rotation around
an axis. The center of and axis of rotation of each Body is contained in the vector data
members rotcent and rotax respectively. We call Tr(𝑡) and Θ(𝑡) respectively the
translation and the angle of the rotation that move the body from its original position to
its position at time 𝑡. Since we want our movements to be periodic we write both Θ(𝑡)
and Tr(𝑡) as a Fourier series with a finite amount of terms. These terms are contained
in the Body data members trans and w, which are a vector and a matrix respectively.
The even elements of trans and w represent the sin terms of the expansion, and the
odd elements represent the cos terms. Tr(𝑡) is then defined as:

Tr(𝑡) =
𝑖𝑚𝑎𝑥∑︁
i=0
trans[2*i] sin

(︃
𝑡

𝑇

2𝜋
i + 1

)︃
+

𝑗𝑚𝑎𝑥∑︁
j=0
trans[2*j+1] cos

(︃
𝑡

𝑇

2𝜋
j + 1

)︃
,

with 𝑖𝑚𝑎𝑥 =
trans.size()

2
− 1, 𝑗𝑚𝑎𝑥 =

trans.size()

2
− 2.

(31)

Θ(𝑡) is similarly defined as:

Θ(𝑡) =
𝑖𝑚𝑎𝑥∑︁
i=0
w[2*i] sin

(︃
𝑡

𝑇

2𝜋
i + 1

)︃
+

𝑗𝑚𝑎𝑥∑︁
j=0
w[2*j+1] cos

(︃
𝑡

𝑇

2𝜋
j + 1

)︃
,

with 𝑖𝑚𝑎𝑥 =
w.size()

2
− 1, 𝑗𝑚𝑎𝑥 =

w.size()

2
− 2.

(32)

Our bodies also need to know their current position in time. This is accomplished
with the Body data member t, which denotes at which point in time the body finds
itself. t equals the time 𝑡 expressed in units of 𝑇 .

We now have all the elements needed to properly describe the Move method.
While it changes slightly for each body the better part of it is identical. When called
with as argument a double T it uses Eq. (31) calculates the transition step vector delta
which translates the body from its current position at time t to its new position at time
T: delta = Tr(T) − Tr(t). It then uses Eq. (32) to calculate the rotation angle theta
used to rotate the body to the its position at time T: theta = w(T) −w(t). With theta
and rot it uses the function RotMat to compute the rotation matrix rotmat which
when applied to a vector rotates it around the origin around the axis rotax. Applying
this matrix directly is sufficient to rotate vectors that represent the distance between two

21

points in space, such as the sides of a parallelepiped, while to rotate vectors describing
absolute positions in space around rotcent we use the function Rotate.

Move then applies the translation and rotation to the body. In a sphere it translates
and rotates its center, in a parallelepiped it translates and rotates the center and rotates
the sides, in a capsule it rotates and translates the endpoints of the axis. cent is
translated too, so that the center of rotation translates coherently with the rest of the
body.

At last Move calls the Body method BeMoved on all its sub-bodies. BeMoved
takes as input trans, rotmat and rotcent and moves the sub-body accordingly. This
includes translating and rotating the rotcent and rotax of the sub-body, and rotating
the vectors in its trans. This way the system of reference in which the sub-body
moves is subject to the same rototranslation. This procedure works recursively, so that
BeMoved is called on the sub-body’s own sub-bodies (if any) ensuring that they are
moved as well.

3.4 Code validation

We proceed to check that our code works properly. To do so we compare the numerical
results we obtain for a sphere, parallelepiped and capsule with the analytic results of
Sec. 2, which the code computes too. We call 𝑅̃𝑏 (𝑑𝑥) the numerical estimation of
𝑅𝑏 evaluated with our code with a step 𝑑𝑥. The error Δ𝑅𝑏 (𝑑𝑥) then is the difference
between 𝑅̃𝑏 (𝑑𝑥) and the exact 𝑅𝑏 evaluated analytically:

Δ𝑅𝑏 (𝑑𝑥) = 𝑅̃𝑏 (𝑑𝑥) − 𝑅𝑏 . (33)

The absolute deviation is then |Δ𝑅𝑏 (𝑑𝑥) |. We assume that the absolute deviation
follows a power law:

|Δ𝑅𝑏 (𝑑𝑥) | = 𝛼 𝑑𝑥𝛽, (34)

where 𝛼 and 𝛽 are parameters to determine. We check that this is the case. With a
set body, v𝑟 and 𝑣𝑏 we evaluate Δ𝑅𝑏 for different 𝑑𝑥 values ranging from 0.0001 m to
0.2 m. We then fit the deviations to the power law. To do so we first take the logarithm
on both sides of Eq. (34):

ln(|Δ𝑅𝑏 (𝑑𝑥) |) = ln(𝛼) + 𝛽 ln(𝑑𝑥). (35)

We then evaluate 𝛼 and 𝛽 by means of a least squares regression. We use the same v𝑟
and 𝑣𝑏 for each body to better be able to compare the results. We carry out this test
for 𝑣𝑡𝑎𝑖𝑙 = 0.5 𝑣 𝑓 𝑎𝑙𝑙 , 𝑣𝑐𝑟𝑜𝑠𝑠 = 0.25 𝑣 𝑓 𝑎𝑙𝑙 and 𝑣𝑏 = 2 𝑣 𝑓 𝑎𝑙𝑙 . As solids consider a sphere
with radius 𝑟 = 0.5 m, a parallelepiped with sides s1 = (0.4, 0, 0) m, s2 = (0, 0.6, 0) m,
s3 = (0, 0, 0.8) m, and a capsule with a radius 𝑟 = 0.3 m and Δl = (0.4, 0.4, 0.4) m.

22

Figure 7: The absolute deviation |Δ𝑅𝑠 (𝑑𝑥) | as a function of the
resolution dx of the array of probing rays, for a sphere with radius
𝑟 = 0.5 m and velocities 𝑣𝑡𝑎𝑖𝑙 = 0.5 𝑣 𝑓 𝑎𝑙𝑙 , 𝑣𝑐𝑟𝑜𝑠𝑠 = 0.25 𝑣 𝑓 𝑎𝑙𝑙 and
𝑣𝑏 = 2 𝑣 𝑓 𝑎𝑙𝑙 . The red line represents the power law fit.

We can see the results for the sphere on Fig. 7, for the parallelepiped on Fig. 8 and for
the capsule on Fig. 9. In all these cases we find that the power law of Eq. (34) provides
a good fit for |Δ𝑅𝑏 (𝑑𝑥) |. The most important difference is in the exponent 𝛽: for the
parallelepiped we find 𝛽 = 1.062 compared to 𝛽 = 1.447 and 𝛽 = 1.537 for the sphere
and capsule, respectively. This slower convergence of 𝑅̃𝑝 (𝑑𝑥) to 𝑅𝑝 could be due to
the more complex shape of the projection of the parallelepiped, with sharp edges and
vertices.

Figs. 10, 11 and 12 report a comparison of 𝑅𝑏 (𝑣𝑏) and 𝑅̃𝑏 (𝑣𝑏, 𝑑𝑥) as a function
of 𝑣𝑏 for the three considered elementary solids. The parameters are as before and
𝑑𝑥 = 0.001 m. Clearly the precision is already good, and it is sufficient to determine
the minima of 𝑅𝑏 (𝑣𝑏). These graphs also provide examples of situations where the
shape of the body determines the existence and value of an optimal speed.

Another aspect of the code we check is its ability to handle rain shadowing in
composite bodies correctly. To do so we consider a complex body composed by two
parallelograms: 𝑝1 with sides (0.8, 0, 0) m, (0, 0.5, 0) m and (0, 0, 0.8) m, and 𝑝2 with
sides (0.6, 0, 0) m, (0, 0.3, 0) m and (0, 0, 0.6) m. We call c1 the center of 𝑝1, and c2
the center of 𝑝2. We consider 𝑣𝑏 = 0.52 𝑣 𝑓 𝑎𝑙𝑙 , 𝑣𝑡𝑎𝑖𝑙 = 0 and 𝑣𝑐𝑟𝑜𝑠𝑠 = 0.03 𝑣 𝑓 𝑎𝑙𝑙 . We call
the total wetness of this double parallelepiped 𝑅2𝑝. We evaluate 𝑅2𝑝 as we move c2
along the 𝑦 axis starting from c2 = c1. We expect that at the start 𝑝2 is contained inside
𝑝1, so 𝑅2𝑝 = 𝑅𝑝1, but as |c2 − c1 | increases we expect 𝑅2𝑝 to remain constant while 𝑝2
remains fully inside 𝑝1, then to increase as 𝑝2 gradually moves out, and finally remain
constant again as 𝑝2 is fully outside. Furthermore since v𝑟𝑒𝑙 has no 𝑦 component, 𝑝1

23

Figure 8: Same as Fig. 7 for a parallelepiped with sides s1 =

(0.4, 0, 0) m, s2 = (0, 0.6, 0) m, s1 = (0, 0, 0.8) m.

and 𝑝2 do not overshadow one another as long as they are no longer in contact, so we
expect the final value of 𝑅2𝑝 to simply be 𝑅𝑝1 + 𝑅𝑝2. The numerical results reported in
Fig. 13 confirms that 𝑅2𝑝 behaves exactly as expected.

24

Figure 9: Same as Fig. 7 for a capsule with a radius 𝑟 = 0.3 m
and Δl = (0.4, 0.4, 0.4) m.

Figure 10: 𝑅𝑠 (𝑣𝑏) and 𝑅̃𝑠 (𝑣𝑏, 𝑑𝑥) of a sphere for a variable 𝑣𝑏 and a
fixed 𝑑𝑥 = 0.001 m. (a) Comparison of the exact analytic wetness
𝑅𝑠 (𝑑𝑥) (line) and the numerical estimation of the same quantity
𝑅̃𝑠 (𝑑𝑥) (dots) obtained for a sphere of radius 𝑟 = 0.5 m with a
rain resolution 𝑑𝑥 = 0.001 m. The velocities are 𝑣𝑡𝑎𝑖𝑙 = 0.5 𝑣 𝑓 𝑎𝑙𝑙 ,
𝑣𝑐𝑟𝑜𝑠𝑠 = 0.25 𝑣 𝑓 𝑎𝑙𝑙 and 𝑣𝑏 = 2 𝑣 𝑓 𝑎𝑙𝑙 . (b) The relative deviation
Δ𝑅𝑏 (𝑑𝑥) of the numerical and exact estimates.

25

Figure 11: Same as Fig. 10, but for a parallelepiped with sides
s1 = (0.4, 0, 0) m, s2 = (0, 0.6, 0) m and s3 = (0, 0, 0.8) m.

Figure 12: Same as Fig. 10, but for a capsule with a radius
𝑟 = 0.3 m and Δl = (0.4, 0.4, 0.4) m.

26

Figure 13: Wetness 𝑅2𝑝 of a complex body composed by two
parallelepipeds 𝑝1 and 𝑝2 as the distance between their centers
|c2 − c1 | increases, 𝑑𝑥 = 0.001 m.

27

4 Results

4.1 Error analysis

To estimate the error on the numerical estimation of the wetness 𝑅̃𝑏 of the walking
and running bodies we face additional challenges compared to the elementary bodies
considered in Sec. 4.1. First of all we no longer have access to an analytic solution
with which to compare the numerical results. Second we now have two sources of
discretization error: the finite number of rays and the finite number of time steps.

We assume the two errors to be independent of each other, so we can evaluate
them separately. We assume that both the discretization errors follow an asymptotic
power law valid for small 𝑑𝑥 and 𝑑𝑡. We can then write 𝑅̃𝑏 (𝑑𝑥, 𝑑𝑡) as follows:

𝑅̃𝑏 (𝑑𝑥, 𝑑𝑡) = 𝑅𝑏 + 𝐸𝑑𝑥 (𝑑𝑥) + 𝐸𝑑𝑡 (𝑑𝑡),
𝐸𝑑𝑥 (𝑑𝑥) ≃ 𝐴𝑑𝑥 𝑑𝑥

𝐵𝑑𝑥 ,

𝐸𝑑𝑡 (𝑑𝑡) ≃ 𝐴𝑑𝑡 𝑑𝑡
𝐵𝑑𝑡 ,

(36)

where 𝐸𝑑𝑥 and 𝐸𝑑𝑡 are the discretization errors functions of 𝑑𝑥 and 𝑑𝑡 respectively. We
choose a fixed value of 𝑑𝑥 and evaluate 𝑅̃𝑏 for different values of 𝑑𝑡, then use a least
squares regression to fit the data and find an estimate of 𝑅𝑏 + 𝐸𝑑𝑥 and its error. Once
we have this estimate we can evaluate the absolute deviation similarly as we did in Sec.
3.4:

|Δ𝑅𝑏 (𝑑𝑡) | =
|︁|︁𝑅̃𝑏 (𝑑𝑥, 𝑑𝑡) − (𝑅𝑏 + 𝐸𝑑𝑥)

|︁|︁. (37)

We can then fit this absolute deviation with a power law as done before:

|Δ𝑅𝑏 (𝑑𝑡) | = 𝛼𝑑𝑡 𝑑𝑥
𝛽𝑑𝑡 (38)

To study the error due to 𝑑𝑥 we do the same thing but with 𝑑𝑡 and 𝑑𝑥 switched.
We carry out this test with the same v𝑟𝑒𝑙 and 𝑣𝑏 as in Sec. 3.4: 𝑣𝑡𝑎𝑖𝑙 = 0.5 𝑣 𝑓 𝑎𝑙𝑙 ,

𝑣𝑐𝑟𝑜𝑠𝑠 = 0.25 𝑣 𝑓 𝑎𝑙𝑙 and 𝑣𝑏 = 2 𝑣 𝑓 𝑎𝑙𝑙 . We carry out the error analysis on 𝑑𝑥 with a fixed of
𝑑𝑡 = 0.02 𝑇 , the error analysis on 𝑑𝑡 with a fixed 𝑑𝑥 = 0.001 m. Figs. 14 and 15 report
the results of the error analysis on 𝑑𝑡 for the walking and running bodies respectively.
Figs. 16 and 17 report the results for the error analysis on 𝑑𝑥 for the walking and running
bodies respectively. The error due to 𝑑𝑥 on the walking and running bodies behaves
similarly to the one on the three elementary solids studied in Sec. 3.4. The error due to
𝑑𝑡 exhibits both a faster convergence to zero and a smaller prefactor 𝛼 compared to the
one due to 𝑑𝑥. Furthermore, almost all of the computational complexity of the code
is due to generating and checking rays, and the number of rays generated and checked
is proportional to 𝑑𝑥−2, while the number of times they are checked is proportional to
𝑑𝑡−1, thus makes it more computationally efficient to decrease 𝑑𝑡 than 𝑑𝑥. The error
due to 𝑑𝑡 is then much computationally cheaper to reduce than the error due to 𝑑𝑥.

28

Figure 14: Analysis on the error due to finite 𝑑𝑡 for the walking
body. (a) Estimated wetness 𝑅̃𝑤 as a function of the time step 𝑑𝑡;
the red line represents the power law fit of Eq. (36). (b) Absolute
deviation |Δ𝑅𝑤 (𝑑𝑡) | as a function of the time step 𝑑𝑡; the red line
represents the power law fit of Eq. (38). In these calculations
we fix 𝑑𝑥 = 0.001 m, 𝑣𝑡𝑎𝑖𝑙 = 0.5 𝑣 𝑓 𝑎𝑙𝑙 , 𝑣𝑐𝑟𝑜𝑠𝑠 = 0.25 𝑣 𝑓 𝑎𝑙𝑙 and
𝑣𝑏 = 2 𝑣 𝑓 𝑎𝑙𝑙 .

Figure 15: Same as Fig. 14 but for the running body.

29

Figure 16: Same as Fig. 14 but for varying 𝑑𝑥 and fixed 𝑑𝑡 =

0.02 𝑇 .

Figure 17: Same as Fig. 16 but for the running body.

30

4.2 Optimal velocity

Figure 18: Example of estimation of 𝑣𝑜𝑝𝑡 for a running body found
in the range [0, 2 𝑣 𝑓 𝑎𝑙𝑙] with the following conditions: 𝑣𝑡𝑎𝑖𝑙 =

0.75 𝑣 𝑓 𝑎𝑙𝑙 , 𝑣𝑐𝑟𝑜𝑠𝑠 = 0.5 𝑣 𝑓 𝑎𝑙𝑙 , 𝑑𝑥 = 0.001 m, 𝑑𝑡 = 0.1 𝑇 , 𝑁𝑣 = 50,
𝑁 𝑓 𝑖𝑡 = 5. The red line represents the parabola fit, and the black
cross represents the minimum of 𝑣𝑜𝑝𝑡 estimated by the fitted curve.

We now study the 𝑣𝑜𝑝𝑡 of the walking and running bodies under varying values of
𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠. We first define a range of speeds 0 ≤ 𝑣𝑏 ≤ 𝑣𝑚𝑎𝑥 we deem acceptable
for running and walking. 𝑣𝑚𝑎𝑥 represents the maximum velocity a body can achieve.
Since we measure velocities in units of 𝑣 𝑓 𝑎𝑙𝑙 we first need to know its value. Rain falls
at different speeds depending on the size of the raindrops, but the minimum speed for
precipitations is found around 2.5 m/s [17]. As an upper bound for the running speed
we consider the average speed of an elite marathon runner, which is around 5 m/s [18],
corresponding to 2 𝑣 𝑓 𝑎𝑙𝑙 . Furthermore a fast walking speed for healthy adults is found
to be around 1.75 m/s [19], corresponding to 0.7 𝑣 𝑓 𝑎𝑙𝑙 .

We approximate the shape of 𝑅𝑏 (𝑣𝑏) around its minima with a parabola 𝑃(𝑣𝑏)
defined as follows:

𝑃(𝑣𝑏) = 𝑅𝑚𝑖𝑛 + 𝑘 (𝑣𝑏 − 𝑣𝑜𝑝𝑡)2. (39)

For each value of 𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠 taken into consideration, we evaluate 𝑅𝑏 at 𝑁𝑣 values
of 𝑣𝑏 in the range [0, 𝑣𝑚𝑎𝑥] and we take as an initial estimate of 𝑣𝑜𝑝𝑡 the value
corresponding to the minimum 𝑅𝑏 from those evaluated. We consider 𝑁 𝑓 𝑖𝑡 values of
𝑣𝑏 centered around this initial estimate and the respective 𝑅𝑏 (𝑣𝑏) values, and fit these
data points on Eq. (39) by means of a least squares regression. The 𝑁 𝑓 𝑖𝑡 values of 𝑣𝑏
we consider are spaced as the original 𝑁𝑣 values, allowing us to use values of 𝑣𝑏 for

31

Figure 19: Numerically evalued 𝑣𝑜𝑝𝑡 of the walking body as a
function of 𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠. 𝑑𝑥 = 0.001 m and 𝑑𝑡 = 0.1 𝑇 .

which we have already calculated 𝑅𝑏. This fit provides an estimation of 𝑣𝑜𝑝𝑡 and 𝑅𝑚𝑖𝑛

along with their relative error. If the fit produces values of 𝑣𝑜𝑝𝑡 outside of the range
[0, 𝑣𝑚𝑎𝑥], or fails due to the minimum not existing or being much larger than 𝑣𝑚𝑎𝑥 , we
estimate 𝑣𝑜𝑝𝑡 = 𝑣𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 = 𝑅𝑏 (𝑣𝑚𝑎𝑥). We show an example of this approach in
Fig. 18.

Whenever we evaluate 𝑣𝑜𝑝𝑡 and 𝑅𝑚𝑖𝑛 in this chapter we do so with 𝑑𝑥 = 0.001 m,
𝑑𝑡 = 0.1 𝑇 , 𝑁𝑣 = 50 and 𝑁 𝑓 𝑖𝑡 = 5 for both the walking and the running body. Figs. 19
and 20visualize 𝑣𝑜𝑝𝑡 as a function of 𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠, as color maps for the walking and
running body respectively. We compare these results with the 𝑣𝑜𝑝𝑡 of a sphere and a
parallelepiped with sides s1 = (0.14, 0, 0) m, s2 = (0, 0.42, 0) m, s1 = (0, 0, 1.58) m
evaluated analytically, shown in Figs. 21 and 22.

As we can see the 𝑣𝑜𝑝𝑡 of the walking and running bodies presents major quanti-
tative differences from the 𝑣𝑜𝑝𝑡 of the sphere and the parallelepiped. For the sphere the
minimum value of 𝑣𝑜𝑝𝑡 is 2 𝑣 𝑓 𝑎𝑙𝑙 , which at the end of the whole range of 𝑣𝑜𝑝𝑡 considered
for the walking and running body: if a sphere were an accurate model of a human body
the solution would always be to move as fast as possible. We see that our more detailed
modeling of the human body shows this to be false, as 𝑣𝑜𝑝𝑡 assumes values well below
2 𝑣 𝑓 𝑎𝑙𝑙 over a good range of values of 𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠. The modeling of the human body
as a parallelepiped predicted that if 𝑣𝑜𝑝𝑡 exists then its value equals that of 𝑣𝑡𝑎𝑖𝑙 ; this
prediction is also contradicted more realistic model that for both walking and running
predicts a value of 𝑣𝑜𝑝𝑡 exceeding 𝑣𝑡𝑎𝑖𝑙 , and decreasing as 𝑣 𝑓 𝑎𝑙𝑙 increases. One common

32

Figure 20: Same as Fig. 19 but for the running body.

property of 𝑣𝑜𝑝𝑡 shared by all the considered body models is the fact that for 𝑣𝑜𝑝𝑡 to be
finite 𝑣𝑡𝑎𝑖𝑙 needs to be positive. While it is possible that finite 𝑣𝑜𝑝𝑡 exist for 𝑣𝑡𝑎𝑖𝑙 ≤ 0 in
the walking and running bodies, none was found in the [0, 𝑣𝑚𝑎𝑥] range in either model.
Comparing the results of the walking and running bodies we note that the 𝑣𝑜𝑝𝑡 of the
walking body, which ranges from 0.52 𝑣 𝑓 𝑎𝑙𝑙 to 0.70 𝑣 𝑓 𝑎𝑙𝑙 generally have lower values
than the 𝑣𝑜𝑝𝑡 found for the running body, which range from 0.9 𝑣 𝑓 𝑎𝑙𝑙 to 2 𝑣 𝑓 𝑎𝑙𝑙 .

We now ask ourselves if it is better to walk or run in the rain. To answer this
question we compare the values of the minimum wetness 𝑅𝑚𝑖𝑛 evaluated for the walking
and running body with the same values of 𝑣𝑡𝑎𝑖𝑙 and 𝑣 𝑓 𝑎𝑙𝑙 , and check which body achieves
the smaller one. We obtain a comparison shown in Fig. 23. In the vast majority of
horizontal wind velocity components the best course of action is to run, either as fast as
possible or at 𝑣𝑜𝑝𝑡 , but there is a small but important subset of wind velocities in which
walking is preferable: 𝑣𝑡𝑎𝑖𝑙 ≈ 0.6 𝑣 𝑓 𝑎𝑙𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠 ≤ 0.2 𝑣 𝑓 𝑎𝑙𝑙 .

We now illustrate the detailed behavior of 𝑣𝑜𝑝𝑡 as a function of 𝑣𝑡𝑎𝑖𝑙 for fixed
values of 𝑣𝑐𝑟𝑜𝑠𝑠. For a finite number of 𝑣𝑐𝑟𝑜𝑠𝑠 values we search for 𝑣𝑜𝑝𝑡 as before for
multiple values of 𝑣𝑡𝑎𝑖𝑙 and consider only the results in the range 0 ≤ 𝑣𝑜𝑝𝑡 ≤ 𝑣𝑚𝑎𝑥 .
Figs. 24 and 24 report these detailed 𝑣𝑜𝑝𝑡 curves for the walking and running bodies
respectively. The presence of 𝑣𝑐𝑟𝑜𝑠𝑠 systematically increases 𝑣𝑜𝑝𝑡 . A sufficiently large
𝑣𝑜𝑝𝑡 can even eliminate 𝑣𝑜𝑝𝑡 completely, although the effect diminishes as 𝑣𝑡𝑎𝑖𝑙 increases.
Furthermore, the detailed plots confirm that the walking body achieves lower values of
𝑣𝑜𝑝𝑡 than the running body. This is mainly due to the parallelepiped representing the

33

Figure 21: 𝑣𝑜𝑝𝑡 of a sphere as a function of 𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠 evaluated
analytically with Eq. (14). The black crosses indicate that no 𝑣𝑜𝑝𝑡

exists for those values of 𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠.

Figure 22: Same as Fig. 21 but for a parallelepiped with sides
s1 = (0.14, 0, 0) m, s2 = (0, 0.42, 0) m and s3 = (0, 0, 1.58) m.
𝑣𝑜𝑝𝑡 evaluated analytically with Eq. (20).

34

Figure 23: 𝑣𝑜𝑝𝑡 of the body that achieves the least wetness between
the walking and running bodies as a function of 𝑣𝑡𝑎𝑖𝑙 and 𝑣𝑐𝑟𝑜𝑠𝑠.

torso acquiring a forward angle in running. This inclination penalizes the low-end of
speeds. In both graphs we observe discontinuities at smaller values of 𝑣𝑡𝑎𝑖𝑙 , with sharp
increases in the value of 𝑣𝑜𝑝𝑡 as 𝑣𝑡𝑎𝑖𝑙 is reduced.

35

Figure 24: 𝑣𝑜𝑝𝑡 of the walking body as a function of 𝑣 𝑓 𝑎𝑙𝑙 for a
few values of 𝑣𝑐𝑟𝑜𝑠𝑠.

Figure 25: 𝑣𝑜𝑝𝑡 of the running body as a function of 𝑣 𝑓 𝑎𝑙𝑙 for a
few values of 𝑣𝑐𝑟𝑜𝑠𝑠.

36

5 Discussion and Conclusion

In the present thesis we study the optimal velocity in which to move under rain falling
in a steady wind to get soaked as little as possible. For the first time we address this
problem using a model of the human body composed by multiple elementary shapes
that move relative to each other, simulating both a walking and a running person. Our
model involves spheres, parallelepipeds and capsules. In doing this we also derive a
first analytical solution for the wetness of the capsule.

We write a numerical code capable of simulating the movement of our model of
the human body during both running and walking, and evaluating the wetness of an
arbitrary body made up of spheres, parallelepipeds and capsules, for arbitrary velocity
of the wind and the of the body. We check the numerical results obtained this way
against the analytical results of the sphere, parallelepiped and capsule, and study the
numerical error of our estimations of the wetness for the walking and running bodies,
due to the spatial and time discretizations.

We compare our results with the ones obtained by modeling the body as a sphere
and as a parallelepiped, and find significant differences: the sphere modeling predicted
the optimal velocity to always exist in the presence of a tailwind, and always be larger
than twice the falling speed of the rain, but our results show that the optimal speed can
be much lower, especially while walking; the parallelepiped modeling predicted the
optimal velocity to always equal the tailwind (if present), while our results show that
the optimal velocity increases as the crosswind increases.

The general result is that without a tailwind it is better to run as fast as possible
(although the advantage of running decreases at larger and larger speed), while in
the presence of a strong enough tailwind (at least around a fifth of the falling speed
of the rain) there is an optimal walking/running velocity after which accelerating is
counterproductive. The presence of a crosswind increases the optimal speed, and may
eliminate it completely strong enough. Notably for a limited range of the tailwind and
crosswind components it is actually better to walk than to run.

Possible further lines of investigation include a more accurate modeling of the
human body and its dynamics, the implementation of different body shapes and their
effect on the optimal velocity, and the addition of an umbrella that can protect the body
from the rain. The code can be used ”as is” to evaluate the soaking amount for models
of arbitrary animals, e.g., dogs or penguins.

37

References

[1] B. L. Schwartz, M. A. B. Deakin, Math. Mag. 46, 272 (1973).

[2] D. Hailman, B. Torrents, Math. Mag. 82, 266 (2009).

[3] F. Bocci, Eur. J. Phys. 33, 1321 (2012).

[4] T. Kroetz, Rev. Bras. Ensino Fis. 31, 4304 (2009).

[5] L. Pournin, M. Weber, M. Tsukahara, J. A. Ferrez, M. Ramaioli, T. M. Liebling,
Granul. Matter 7, 119 (2005).

[6] D. C. Lay, S. R. Lay, J. J. McDonald, Linear algebra and its applications, 5th ed.
(Pearson Education, 2014).

[7] R. Schneider, Convex bodies: the Brunn–Minkowski theory (Cambridge Univ.
Press, 1993).

[8] P. Huang, S. Pan, Y. Yang, Discrete Comput. Geom. 54, 728 (2015).

[9] L. da Vinci, Uomo vitruviano (1490) (photography by Luc Viatour).

[10] Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland,
USA, https://imagej.net/ij/, (1997-2018).

[11] A. K. Yegian, Y. Tucker, S. Gillinov, D. E. Lieberman, J. Exp. Biol. 220, 13
(2019).

[12] T. J. van der Zee , E. M. Mundinger, A. D. Kuo1, Sci Data 9, 704 (2022).

[13] P. R. Cavanagh, Foot Ankle 7, 197 (1987).

[14] A. F. dos Santos, T. H. Nakagawa, G. Y. Nakashima, C. D. Maciel, F. Serrão, Int.
J. Sports. Med. 37, 369 (2016).

[15] C. A. Crespi, GitHub repository for the numerical code used in the present thesis,
https://github.com/Cr3sp1/RainSimulation (2024)

[16] A. S. Nery, N. Nedjah, F. M. G. Franca, Analog. Integr. Circ. Sig. Process. 70,
189 (2012).

[17] V. Bringi, M. Thurai1, D. Baumgardner, Atmos. Meas. Tech. 11, 1377 (2018).

[18] V. Billat, A. Demarle, J. Slawinski, M. Paiva, J. Koralsztein, Med. Sci. Sports
Exerc. 33, 2089 (2001).

[19] R. L. Waters, B. R. Lunsford, J. Perry, R. Byrd , J. Orthop. Res. 6, 215 (1988).

38

https://imagej.net/ij/
https://github.com/Cr3sp1/RainSimulation

	Introduction
	The model
	Analytic results
	The sphere
	The parallelepiped
	The capsule

	The human body

	Technical implementation
	Projection surface
	Static bodies
	Body dynamics
	Code validation

	Results
	Error analysis
	Optimal velocity

	Discussion and Conclusion
	References

