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Abstract

In this work we formulate the equations that govern the motion of a
colloidal particle suspended in a viscoelastic medium, showcasing non-
Markovian behavior, and interacting with a sinusoidal corrugation in
1 dimension. We investigate the dynamics of this Prandtl-Tomlinson
model for the friction of a colloidal particle by numerically integrating
the resulting equations. We evaluate the effective potential experi-
enced by the particle in conditions of pure diffusion proving that the
non-Markovian bath effectively raises the height of the barriers between
successive corrugation wells. Furthermore, we focus our analysis on the
distribution of waiting times in the potential minima, comparing the
simple exponential decay exhibited by the standard Prandtl-Tomlinson
model with the double-exponential decay of its non-Markovian exten-
sion. Additionally, we investigate the velocity dependence of the fric-
tion force within this model, thoroughly analyzing the high-velocity
regime. As for the more interesting low-velocity regime, we initiate a
preliminary exploration, outlining the framework for future analysis.
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Chapter 1

Introduction

Since its introduction in 1928-1929 by L. Prandtl and G.A. Tomlinson, the epony-

mous model has been the subject of countless theoretical studies in the field of

condensed matter physics. The Prandtl-Tomlinson model has thus been acclaimed

as one the simplest and most popular model for describing atomic-scale friction.

Inspired by the article “Barrier Crossing in a Viscoelastic Bath” by Ginot et al.

[1], in this work we propose an extension of the Prandtl-Tomlinson (PT) model to

include a simple model for a viscoelastic bath, namely an environment characterized

by memory effects, what is commonly known as a non-Markovian behavior. These

processes are studied in the field of statistical physics, as referenced in [2]. We

describe the dynamics of a colloidal particle in viscoelastic environment by coupling

it with a fictitious particle, called “bath particle”, characterized by its damping

coefficient, using an elastic spring.

The first part of this thesis focuses on discussing the standard Prandtl-Tomlinson

model and the Langevin equation that describes the Brownian motion of particles.

Next, we present a simple non-Markovian extension of the model, with the equations

governing its dynamics. The second part of the thesis outlines the method for solving

our equations and discusses the choice behind the selection of parameter ranges

analyzed throughout the work. The final part of the thesis presents the obtained

results and their analyses conducted.

The initial study focuses on the effective potential experienced by the particle

under equilibrium conditions, corresponding to pure Brownian diffusion. The aim

of this section is to understand the effect of a non-Markovian environment on the

effective potential experienced by the colloidal particle.
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The second section focuses on the thermally diffusive undriven model, and in

particular on the distributions of waiting times of the particle in potential minima

and the dynamics of thermally activated barrier crossing. We evaluate numerically

these distributions for pure Brownian diffusion and for non-Markovian Brownian

diffusion. A brief discussion on the effect of temperature in this scenario is also

provided. Subsequently, the distributions are examined in driven conditions, for

both the standard PT model and its extension with a non-Markovian environment.

In this latter part, separate analyses are conducted on the distributions of waiting

times before a barrier crossing occurs to the right or to the left.

The final study focuses on investigating the velocity-dependence of the friction

force, comparing the standard PT model with its non-Markovian extension. Specif-

ically, the high-velocity regime is examined, followed by a preliminary analysis of

the more interesting regime of intermediate-to-small velocity.
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Chapter 2

The model

In this chapter we elucidate the model used to study the dynamics of a colloidal

particle on a corrugated substrate in the presence of a viscoelastic bath.

This chapter is divided into three parts. In the first part, we recall the basics of

the Prandtl-Tomlinson model, which has been extensively studied in recent years,

see Ref.[3]. In the second part, we introduce the Langevin equations; this section is

based on Ref.[4]. The third section formulates an extension of the Prandtl-Tomlinson

model that includes a simple implementation of a viscoelastic bath, therefore adding

memory to the model, inspired by a recent work [1] that addressed the simpler two-

well problem.

2.1 The Prandtl-Tomlinson model

The Prandtl-Tomlinson (PT) model is one of the most successful and important

models for the description of nanofriction. This model is particularly used in friction

force microscope (FFM), where friction forces are measured by an atomic force

microscopy (AFM) tip that is dragged along a surface.

In the Prandtl-Tomlinson model, the AFM tip is mimicked by a point mass

dragged by a spring of elastic constant K, which couples the position of the point

mass and the position of a FFM support stage driven with a constant velocity v.

The interaction between the point mass and the substrate over which it is dragged is

described by a one-dimensional sinusoidal potential, representing the surface energy

corrugation. This potential is characterized by energy amplitude denoted by U

(thus a barrier height equal to 2U) and a lattice periodicity represented by a. The
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Figure 2.1: Scheme of the Prandtl-Tomlinson model

corrugated potential and the dragging spring can be combined into a total potential

experienced by the point mass

V (x, t) = U cos

(︃
2π

a
x

)︃
+

1

2
K(x− vt)2 . (2.1)

The PT model dissipates the energy pumped into the system by the driving stage

through a damping viscous force

F = −γẋ , (2.2)

where γ is a damping rate that characterises the energy dissipated effectively into

the substrate.

We now introduce the dimensionless parameter η, defined as

η =
4π2U

Ka2
, (2.3)

that combines the corrugation amplitude and the characteristic elastic energy of the

driving spring.

The Prandtl-Tomlinson model predicts two different patterns of motion depend-

ing on the parameter η

1. Smooth sliding regime, which occurs when η < 1.

The total potential V (x) shows a single minimum and the sliding of the point

mass/tip is smooth over the sinusoidal potential.

2. Stick-slip regime, when η > 1.

In this case, the total potential V (x) exhibits at least two minima, and the
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sliding becomes intermittent: the point mass stands in one of the minima for

a finite time, then rapidly drops into the adjacent minimum.

In the stick-slip regime, it is possible for the particle to exhibit both single-slip and

multiple-slip dynamics, meaning it may hop more than one barrier with a single

jump, see Ref. [5]. In this work we are going to analyze the overdamped regime,

characterized by high damping coefficients γ (see Ref. [6]),where inertial effects be-

come negligible: in this regime, the model does not show multiple-slips.

At finite temperature T due to thermally activated barrier jumps, the overdamped

Prandtl-Tomlinson model exhibits a time-averaged friction force Fk(v) depending

on the driving velocity v of the slider, according to the following equation:

Fk(v) = F0 − aT
2
3 ln

(︃
b
T

v

)︃ 2
3

. (2.4)

Here F0 = F (T = 0) represents the athermal low-velocity limit of friction, as ex-

plained in [3]. Equation (2.4) holds for low, but not too low, velocities, whereas for

high velocities, the friction force varies linearly with the slider velocity v. The static

friction force Fstatic, which represents the force needed to initiate motion between

two contacting bodies at rest, is relevant in condition of ’no-sliding’ and zero tem-

perature, and it is determined by the derivative of the potential V (x) at its steepest

point, which occurs halfway between a minimum and a maximum xhalf = 3
4
a of

the corrugation potential. The static friction force is thus given by the following

equation

Fstatic =

⃓⃓⃓⃓
⃓ ∂∂x

(︃
U cos

(︃
2π

a
x

)︃)︃ ⃓⃓⃓⃓
⃓
x=xhalf

=

⃓⃓⃓⃓
⃓2πa U sin

(︃
3

2
π

)︃⃓⃓⃓⃓
⃓ = 2π Ua−1. (2.5)

2.2 Brownian motion and Langevin equation

Brownian motion is a physical phenomenon describing the random motion of a par-

ticle suspended in a fluid. This phenomenon is caused by the interaction between

the fluid particles and the suspended particle. The fluid particles move randomi-

cally due to the effect of temperature, and these random collisions cause random

accelerations of the suspended particle.
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The Langevin equation is essential in describing the dynamics of particles expe-

riencing stochastic forces, in particular, it is a fundamental tool to understand the

Brownian motion of particles.

The standard form of Langevin equation for a particle moving in one dimension is

given by

mẍ(t) = −γẋ(t) + f(x) + ξ(t) . (2.6)

Here m represents the mass of the particle, x(t) is the position, f(x) = −dV
dx

denotes

conservative part of the force acting on the particle, γ is the damping coefficient

that represents the interaction with the surrounding medium, ẋ is the velocity, ẍ is

the acceleration and ξ(t) is the stochastic force.

The Gaussian-distributed random force ξ(t) is required to satisfy the fluctuation-

dissipation theorem, which can be mathematically expressed as

⟨ξ(t)ξ(t′)⟩ = 2kBTγδ(t− t′) , (2.7)

where ⟨ξ(t)ξ(t′)⟩ denotes the correlation function of the random force, kB is the

Boltzmann constant, T is the temperature of the system and γ is the damping

coefficient. The Dirac delta δ(t− t′) indicates that the fluctuations are uncorrelated

at different times, indicating that the Langevin thermostat has no memory.

The Langevin equations may be rewritten for the overdamped regime, where

the motion of the particle is dominated by damping forces and the inertial effects

become negligible compared to the dissipative forces.

γẋ(t) = f(x) + ξ(t) . (2.8)

The overdamped regime is relevant in systems where inertia plays a minor role

compared to the dissipative forces, such as the system we are going to consider.

2.3 Our model

The aim of this section is to illustrate the extension of the PT model that we

are going to investigate throughout this thesis. The model is an extension of the

Prandtl-Tomlinson model when we consider the point mass as a colloidal particle
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on a corrugated substrate in the presence of a viscoelastic bath.

As precisely described in [7] viscoelastic materials exhibit a combination of

viscous, fluid-like, and elastic, solid-like, properties, showing a nontrivial time-

dependent behavior when subjected to stress or strain.

A non-Markovian fluid produces a thermostating behavior that deviates from

the standard Langevin thermostat in ways that we can describe as follows [7]

1. the current state of stress/strain depends not only on the present conditions

but also on the past history of the material. Thus also its future behavior is

influenced by the sequence of past deformation events.

2. As a consequence, a non-Markovian thermostat can exhibit a strongly frequency-

dependent response, which is more similar to that of an elastic solid when

stimulated at high frequency, and more similar to that of a viscous fluid at

low frequency.

V (x)
2U

γb

γ

K

kb

v

a
x

x = 0

Figure 2.2: Sketch of the non-Markovian Prandtl-
Tomlinson model

Figure 2.2 displays a scheme of our model, where the viscoelastic bath is mimicked

by the addition to the standard Langevin thermostat of a fictitious particle, char-

acterized by a larger damping coefficient γb, elastically coupled, through a spring

constant kb, with the colloidal particle.

In light of these considerations, the generalized Langevin equations can be rewrit-

ten as follows

γẋ(t) = −kb(x− xb)−∇xV + ξ(t)

γbẋb(t) = −kb(xb − x) + ξb(t)
. (2.9)
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The elastic coupling term with the bath particle describes the non-Markovianity of

the environment: the colloidal particle position is influenced by its past positions,

through the ”memory” kept by the xb fictitious particle.

The equations (2.9) for the potential given by the PT model are

γẋ(t) = −kb(x− xb) +
2π

a
U sin

(︃
2π

a
x

)︃
−K(x− vt) + ξ(t)

γbẋb(t) = −kb(xb − x) + ξb(t)

. (2.10)

As for the standard Langevin thermostat of Section 2.2,

⟨ξi(t)⟩ = 0 ⟨ξi(t)ξj(t′)⟩ = δij2kBTγiδ(t− t′) i = 1, 2

These equations express that ξ and ξb are uncorrelated random forces with zero

mean. The fluctuation amplitude of the random forces expressed by the second

relation above is such that it guarantees the correct canonical sampling at temper-

ature T .

Physical quantity Units

length a
damping coefficient γ
energy U
force Ua−1

spring constant Ua−2

velocity Ua−1γ−1

mass U−1a2γ2

time t0 ≡ U−1a2γ

Table 2.1: Physical quantities of this work expressed as a
combinations of the three natural units of our model: a, γ,
U .

The model just presented involves several dimensional physical quantities. Given

the simplicity of this model, it is convenient to express all physical quantities of this

work in terms of natural units: lenghts units of period of the potential corrugation;

energies expressed in units of the corrugation amplitude and damping coefficients

expressed in units of that characterising the real-particle bath.

Through this work we are going to use both t0 U−1a2γ as the unit of time.

14



Chapter 3

Technical implementation

In this chapter, we outline the method used to solve the equations governing the

dynamics of the extended Prandtl-Tomlinson model, and we describe the choices of

parameter ranges analyzed in the study of the same dynamics.

3.1 Euler-Maruyama method

In this part we introduce the method of numerical integration of the equations in-

troduced in Section 2.3: the Euler-Maruyama method [8].

This method is the natural extension of Euler method, a traditional method for the

numerical approximation of ordinary differential equations (ODEs), to stochastic

differential equations (SDEs).

This approach represents one of the simplest time discrete approximations of Brow-

nian motion, that models the random motion of particles suspended in a fluid.

Ref.[8] considers a process X satisfying the following scalar stochastic differential

equation

dX(t) = a(X(t), t)dt+ b(X(t), t)dW (t) (3.1)

on interval 0 ≤ t ≤ ttot with initial value X(t = 0) = X0.

Considering a discretization of [0, ttot] into N equal intervals of lenght

dt =
ttot
N

(3.2)
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the Euler-Maruyama approximation is a continuos time stochastic process Y =

{Y (t)|t ∈ [0, ttot]} that satisfies

Yn+1 = Yn + a(tn, Yn)(tn+1 − tn) + b(tn, Yn)(Wtn+1 −Wtn) (3.3)

where n = 0, 1, 2, . . . , N − 1 and the initial value is Y (t = 0) = X0. Here a and b

are the so called drift and diffusion functions evaluated at the time tn.

In (3.3) there is also the following term

Wtn+1 −Wtn = ∆Wn (3.4)

for n = 0, 1, 2, . . . , N − 1, which represents a random Gaussian increment of the

Wiener process W (t).

A Wiener process W = {W (t)|t ≥ 0} is defined as a Gaussian process indexed

by nonnegative real numbers t with the following properties:

1. W (0) = 0 with probability equal to 1.

2. for any time s < t the increment ∆t,s ≡ W (t) − W (s) follows a Gaussian

distribution with mean value ⟨W (t)⟩ = 0 and variance V ar(∆t,s) = t− s .

3. has stationary indipendent increments.

A Wiener process is commonly called Brownian motion, but sometimes these termi-

nologies are distinguished by their nature: the first is a mathematical process and

the second a physical one.

To solve equations (2.10) the Wiener processes are Gaussian noises following the

discrete-time correlation described in [9] as

ξ(t) =
√︁
2kBTγdt ξ0(t) (3.5)

is important to note that this relation is valid for discrete-time stochastic algorithms.

In this relation, dt represents the time step size and ξ0 denotes an uncorrelated

Gaussian noise with zero mean and standard deviation 1.
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3.1.1 Time step size

Given the number of steps and the total simulation time the time step is fixed by

Eq. (3.2). Since the numerical error of the integration method decreases as dt

is decreased, one should decrease dt as much as possible. On the other hand, to

accumulate significant statistics over the mechanical evolution, one often needs to

run the simulation for long simulation times ttot, and therefore for a large number

N of steps. To keep the overall computation time under control, one needs to

select the integration step carefully. We now explain the method for a satisfactory

determination of dt. As the equation is stochastic, the integration numerical error

tends to hide under the stochastic noise introduced by the Wiener process. For

this reason, convergence tests over dt need to be carried out at T = 0, where the

Gaussian noise plays no role. This consideration leads us to a standardized numerical

technique that can be outlined as follows:

■ We select an initial time step dt .

■ A relatively short T = 0 simulation is carried out using this initial time step.

■ The same simulation is executed using a smaller time step, typically reduced

by a factor 2.

■ The solutions of these two simulations are compared to check for possible de-

viations. If these deviation are negligibly small, then the first tested time step

is appropriate, and can be adopted for the actual simulations at all tempera-

tures. Otherwise this step-reduction process is iterated until the deviations in

the solution become negligibly small.

The time step size appropriate for the adopted set of parameters kb, K, γ, γb,

discussed in the next section, is dt = 10−3 U−1a2γ.
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Figure 3.1: Examples of solutions of the equation of motion
(2.10) started at x(0) = 0, in no-driving conditions (K =
0 Ua−2) for a standard Brownian system (kb = 0 Ua−2),
at the few indicated values of temperature T (standard
thermal diffusion). The thin horizontal lines indicate the
positions of the potential minima.

3.2 Ranges of parameters

We discuss the choice of parameter ranges investigated in the present study.

3.2.1 Temperature

To select a suitable temperature range for the viscoelastic environment we have sim-

ulated the trajectory of the colloidal particle in condition of no-sliding and without

considering the viscoelastic bath. This condition can be achieved by removing the

coupling between the real particle and the driving stage support, namely we set the

driving spring constant K to 0 Ua−2

Figure 3.1 reports the outcome of a few simulations of pure diffusion for a few

different temperatures. This figure illustrates how the particle moves under the
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Figure 3.2: Same as Fig. 3.1, but for a Brownian particle
in a non-Markovian environment with kb = 15 Ua−2

competing effects of thermal fluctuations and of the sinusoidal corrugation potential.

■ When kBT = 0.1/0.2 U the particle drops in one of the adjacent minima, then

oscillates around the minimum position. Inter-minima thermally activated

jumps are extremely rare.

■ When kBT = 0.5 U the random forces leave the particle at a minimum for the

most of the simulation time, but are sufficiently strong to promote occasional

jumps, and therefore a visible diffusive motion.

■ When kBT = 0.7/1 U minima and intermediate barriers are both significantly

explored, the inter-minima jumps are so frequent that diffusive events domi-

nate.

The time evolution for the non-Markovian model is qualitatively similar, but with

less frequent inter-well jumps (see Fig. 3.2). Since we are interested in studying the

statistics of barrier jumps, we see that a suitable temperature is kBT = 0.5 U , which
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is large enough that jumps occur at a fair rate, but not so large that the residence

time at the potential wells becomes negligible.

3.2.2 Damping coefficients and spring constants

In this part, we refer to the experiments described in Ref.[1] to tune the param-

eters used in our simulations. Specifically, Ref.[1] employs damping coefficients

γ = 0.186 µNsm−1 and γb = 1.44 µNsm−1. To adopt a similar ratio of viscous co-

efficients in our model, we consider γb = 7γ. With regard to the spring constant

kb, linking the true particle to the non-Markovian environment fake particle, to fix

its value we identify the elastic energy accumulated in that spring when the true

and fake particles sit at the bottom of adjacent wells. In the experiment of Ref.[1],

a spring constant kb = 0.4 µNm−1 is used. The distance between two minima is

2xm = 0.64 µm therefore the elastic energy is given by

Ukb =
1

2
kb(2xm)

2 ≃ 8.19 · 10−20 J

The potential barrier in the model of Ref.[1]

∆U = 2.1 kBT ≃ 8.65 · 10−21 J

because the experiments are conducted at T = 25 ◦C = 298.15K. As a result

1

2

kb(2xm)
2

∆U
≃ 9.47

To obtain a similar ratio in our model where the height of the potential barrier is

twice of the natural units ∆U = U0 = 2U . In our model, two consecutive minima

are separated by a distance a; therefore, we can express the elastic energy as

Ukb =
1

2
kba

2

By comparing the quantities just described, we observe that the corresponding value

of harmonic spring kb in our units would equal 37.9 Ua−2, thus we explored compa-

rable although slightly smaller values kb = 15 Ua−2 and kb = 20 Ua−2.

As for the elastic spring constant K, it describes how strongly the colloidal

particle is coupled to the sliding stage. A very small value of K implies that it

may take several thousands of time units for the colloidal particle to start following

the slider, thus a steady state may be hard to reach. On the other hand, with
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a large K the particle would move close to the driving stage and thus may not

exhibit significant effects of the interaction with the corrugation potential and the

non-Markovian bath particle, as discussed for standard PT model in Section 2.1,

and specifically around Eq.(2.3). As a fair compromise, for all driven simulations

we adopt K = 0.001 Ua−2.

3.2.3 Velocity

The choice of the slider velocity v range to investigate is based on the fact that it

determines the particle’s average waiting time tw = a/v in the potential minima.

For the effects of the non-Markovian environment to be significant, we need tw

to be comparable to or longer than the typical times between thermally-activated

interwell jumps. As shown in Figure 3.1, thermal jumps can occur every few times

t0 for kBT = 0.5 U . As a result, interesting physics is expected for

v ≲
a

10 t0
= 0.1 Ua−1γ−1.

On the other hand, a very low velocity would cause the slider to advance by only

a few units of length a even in very long simulations. For instance, at a velocity

of 10−6 Ua−1γ−1, the stage would move by one unit of length a in a simulation

with ttot = 106 t0 that requires one billion time steps. Extremely low velocities

v < 10−4Ua−1γ−1 although potentially useful to investigate the velocity-dependence

of the friction force in the PT model and in its extension are too challenging for this

preliminary study, and we will not attempt them.
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Chapter 4

Analysis and results

We report our investigation of the dynamics of a colloidal particle in a Prandtl-

Tomlinson setup, focusing on the effects of a non-Markovian environment. To make

contact with Ref.[1], we begin our analysis by examining the dynamics of barrier

crossing and the distributions of waiting times of the colloidal particle in a minimum.

We conduct separate comparisons between pure, no driving, jump-diffusion with

and without memory effects, as well as between the complete Prandtl-Tomlinson

model and its non-Markovian extension. Finally, we compare the velocity-dependent

behavior of the friction force between the standard PT model and its non-Markovian

version.

4.1 Effective potential

In this section, we aim to begin understanding how a viscoelastic environment influ-

ences the motion of a colloidal particle threading a sinusoidal energy landscape. To

achieve this, we first address the effective potential to which the particle is subjected

in Brownian motion and its extension within a non-Markovian environment.

In these conditions, characterized by purely thermal effects, the probability dis-

tribution of the positions of a particle follows the Boltzmann equilibrium probability

distribution.

P (x) =
1

Z
e−βVeff(x) , (4.1)

here x denotes the position, Veff(x) the effective potential energy acting on the

particle, Z represents the partition function and β = (kBT )
−1. From this relation,
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Figure 4.1: Comparison of the effective potential Veff(x)
obtained through a histogram of the successive positions
along a simulation at kBT = 0.1 U through Eq.(4.2), for the
standard Markovian environment (kb = 0) and two values
of couplings kb to the memory bath. The actual potential,
shifted so that its minimum coincides with the kb = 0 curve,
is also shown as a dot-dashed line for comparison.

we can express the effective potential as follows

Veff(x) = −kBT (logZ + logP (x)) . (4.2)

Here the partition function Z contributes just an irrelevant additive constant. To

evaluate the probability distribution of the particle positions P (x) we wrote a

python script which maps the particle’s position at successive simulation steps onto

0 ≤ x ≤ 1 a of the corrugation potential and evaluate a 100-bins histogram of po-

sition occurences along the simulation. From the resulting normalized histogram,

using relation (4.2), we reconstruct a map of the effective potential V (x) experi-

enced by the Brownian particle. Figure 4.1 reports the resulting effective potential
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for the standard Markovian environment, and for 2 values of the coupling spring to

the non-Markovian bath, evaluated for kBT = 0.1 U . At this low temperature, the

Boltzmann factor at the maxima is e−20 ≃ 2 ·10−9 times smaller than at the minima,

so even though the simulation cover N = 109 steps, in practice the maxima are never

explored, and this figure covers just the low-energy region near the minimum. Even

with this drawback, it is apparent that in the presence of the non-Markovian ther-

mostat, the effective potential experienced by the particle is steeper. We have also

explored kBT = 0.2 U . At this higher temperature the regular Markovian bath has

a relative Boltzmann probability of visiting the maximum that is e−10 ≃ 4.5 · 10−5

smaller than that of sitting at a minimum. In this condition, indeed, the Brownian

particle is able to explore all the points of the potential, occasionally reaching the

maxima in simulations of 109 steps. However, this practically never occurs in the

presence of a non-Markovian environment. For this reason, we raise the tempera-

ture to kBT = 0.5 U , allowing the model to explore the maxima of the potential a

sufficient number of times for accumulating a significant statistics.
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Figure 4.2: Same as Fig. 4.1, but for a substantially higher
kBT = 0.5 U
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Figure 4.2 perfectly illustrates that for a simple Brownian particle, the effective po-

tential Veff(x) coincides exactly with the corrugated potential on which it moves.

Furthermore, it is observed that the effect of the viscoelastic non-Markovian envi-

ronment is to raise the potential barrier while leaving the position of the minimum

unchanged at x = 0.5 a, thus making it much steeper. These simulations are car-

ried out for 109 time steps to ensure a sufficient number of counts in each bin, thus

correctly sampling the effective potentials Veff(x).

4.2 Waiting-time distribution

To gain deeper insights into the motion of a colloidal particle across a viscoelastic

bath in this section we investigate the barrier-crossing dynamics of a particle under

various conditions. Initially we are going to study the dynamics of barrier crossing

under pure Brownian non-driven conditions, followed by a study of this statistics

for the full Prandt-Tomlinson model.
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Figure 4.3: Visual definition of barrier crossing event and
waiting time
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Firstly, let us define a barrier-crossing event as the instant when the particle’s dis-

placement reaches at least x = 0.7 a from the current minimum. This condition

assures us that the colloidal particle definitely left the minimum and has transi-

tioned into one of the adjacent minima. Moreover we define the waiting time as the

duration between two consecutive crossing events, see Fig. 4.3. To analyze barrier-

crossing events and waiting times we have developed a python code to calculate the

probability distribution P (tw) of waiting times tw in the minima. This probability

distribution P (tw) is developed through a histogram characterized by a variable bin

width allowing us to capture a fair detail of the short timescale and to ensure an

adequate number of points to produce a fair statistics of long waiting times. The his-

togram is adequately normalized to 1 to allow a fair comparison of different trends,

in a correctly-normalized probability density.

4.2.1 Brownian motion and non-Markovianity

In this part we compare simple Brownian diffusion with diffusion in a viscoelastic

bath. As previously explained, Brownian diffusion characterises the stochastic move-

ment of a particle suspended in a fluid due only to time-independent memory-free

effects and collisions with surrounding particles of the fluid. When the surrounding

medium is a viscoelastic fluid, the environment generates memory effects keeping

track of previous particle positions.

Figure 4.4 shows a comparison between the probability distributions of wait-

ing times P (tw) of simple Brownian diffusion (kb = 0, triangles) and P (tw) in the

non-Markovian environment simulated with kb = 15 Ua−2 (squares). For these sim-

ulations we consider kBT = 0.5 U .

In Figure 4.4 the histograms are characterized by a variable bin width: 0.1 t0 from

0 to 1 and 1 t0 from 1 to 100.

As suggested by the lin-log scale, the probability distribution of waiting times in

the ordinary Markovian environment Pkb=0(tw) follows an exponential decay in the

form

Pkb=0(tw) = A exp

(︃
−tw

τ

)︃
. (4.3)

The solid line in Fig. 4.4 is a fit of the histogram points, obtained using an appro-

priate NumPy function. Table 4.1 presents the best fit parameters A and τ .
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Figure 4.4: Comparison of the waiting-time distributions of
a simple Brownian particle and the same particle in a non-
Markovian environment (kb = 15 Ua−2), both simulated at
kBT = 0.5 U

The waiting-time statistics for the Brownian particle with memory is remarkably dif-

ferent: Figure 4.4 shows that the probability distribution exhibits a double exponen-

tial decay with two different time scales: a short timescale associated to back-and-

forth events with the particle being recalled into the originating minimum shortly

after the jump due to viscoelastic effects, and a long timescale corresponding to

regular diffusive processes. To evaluate the relative time scales, we decide to lead us

to fit the delay times with the sum of two exponential decays in the following form:

P (tw) = Ashort exp

(︃
− tw
τshort

)︃
+ Along exp

(︃
− tw
τlong

)︃
. (4.4)

Table 4.2 reports the coefficients obtained and the associated errors.

Figure 4.5 reports similar results for a stiffer viscoelastic thermostat (kb = 20 Ua−2).

Comparing Figs. 4.4 and 4.5, we can observe how the viscoelastic bath, and thus
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Parameter Value

τ [t0] 4.96± 0.05

A [t−1
0 ] 0.20± 0.01

Table 4.1: Best fit parameters of the waiting-time distri-
bution P (tw), Eq.(4.3), for the standard, Markovian ther-
mostat inducing Brownian diffusion.

Fit parameter kb = 15 [Ua−2] kb = 20 [Ua−2]

τshort [t0] 0.17± 0.01 0.13± 0.01

Ashort [t
−1
0 ] 2.6± 0.4 0.0012± 0.0001

τlong [t0] 231± 12 460± 93

Along [t−1
0 ] 0.0025± 0.0001 5± 2

Table 4.2: Parameters of waiting-time distributions P (tw)
for Brownian diffusion with memory effects of Figs. 4.4
(kb = 15 Ua−2) and 4.5 (kb = 20 Ua−2), both simulated at
kBT = 0.5 U

the memory of the environment, influences the distribution of waiting times in the

potential minima. In particular, we observe that the Brownian motion with memory

supports even very long waiting times of hundreds of time units, as opposed to the

regular Markovian thermostat, for which long waiting times in excess of a few tens

of time units are radically suppressed at the explored temperature. In the short-

times region, the viscoelastic rapid-recall mechanism has the distribution of non-

Markovian waiting times exceed that of the regular Markovian bath. In contrast, in

the 0.3 t0 ≲ tw ≲ t0 range, the regular Markovian dynamics leads to more likely delay

times. Note that in Figure 4.5 the histograms have a different bin width compared

to those in Figure 4.4, more precisely, a bin width of 2 t0 is set from 1 t0 onwards.

This is because, with a higher coupling constant kb, the number of barrier crossing

events is lower, requiring the merging of more times to obtain useful statistics.
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Figure 4.5: Same as Figure 4.4, but for a viscoelastic spring
kb = 20 Ua−2
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Fit parameter kBT = 0.5 U kBT = 0.7 U

τshort [t0] 0.171± 0.009 0.19± 0.01

τlong [t0] 221± 12 23.9± 0.3

Table 4.3: Comparison of characteristic times of Brownian
diffusion with memory kb = 15 Ua−2 of two different tem-
peratures

4.2.2 Temperature effect on Brownian motion

Here we investigate how temperature influences the waiting-time distributions P (tw).

In particular, to study this effect, we compare the waiting-time distributions of a

simple Brownian particle and a Brownian particle with memory when kBT = 0.7 U .

In both scenarios the decays exhibit shorter characteristic times τ compared to lower
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Figure 4.6: Same as Fig. 4.4, but for kBT = 0.7 U

temperature kBT = 0.5 U . τlong is significantly affected, while τshort remains nearly

the same, as it is mainly affected by the viscoelastic spirng kb. This effect is due

to the presence of larger stochastic forces, causing the particle to exit the potential

minima more rapidly.
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Figure 4.7: Waiting times distribution P (tw) of a stan-
dard PT model (kb = 0) for a few values of the the slid-
ing velocity v and fixed parameters K = 0.001Ua−2 and
kBT = 0.5 U .

4.2.3 Standard Prandtl-Tomlinson model

We come now to investigate the distribution of waiting times P (tw) for the standard

Prandtl-Tomlinson model, i.e. without considering a viscoelastic environment(kb =

0), but including driving through a spring withK = 10−3 Ua−2. In these simulations

kBT is set to 0.5 U .

Figure 4.7 reports a few histograms of the standard PT model driven at few different

velocities. The v = 0 simulation yields the distribution of waiting times of a simple

Brownian particle constrained with a spring of elastic constant K to a fixed point:

this is similar to the free model, and we take it as the reference to compare the

v > 0 simulations. The waiting-time distributions exhibit long timescale exponential

decays with decreasing characteristic time values τ as a function of v. This is

expected since a larger slider velocity reduces the probability of longer waiting times
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Velocity v [Uγ−1a−1] Fit parameter τ [t0]

0.0 4.91± 0.04
0.1 4.42± 0.04
0.2 3.52± 0.02
0.3 2.79± 0.02
0.5 1.78± 0.03

Table 4.4: Parameters of waiting times distribution P (tw)
for standard Prandtl-Tomlinson model

favoring shorter stays in the potential minima. Table 4.4 reports the characteristic

times τ obtained through a linear fit over the natural logarithms of bin heights,

performed using the appropriate NumPy function. The fitting is performed from

the first bin after the peak in the distribution to the one before the first empty bin,

beyond which data become unreliable. This protocol of bin range for fitting single

exponential decays is also applied to all subsequent fits.

4.2.4 Non-Markovian Prandtl-Tomlinson model

In this section we aim to understand how the distributions of waiting times in poten-

tial minima change when considering our non-Markovian Prandtl-Tomlinson model

compared to the regular PT model under analogous driving conditions. Figure 4.8

reports six distributions of waiting times as a function of the slider velocity, from

0 to 0.5 Ua−1γ−1, while fixing the coupling parameters kb = 15 Ua−2. The figure

also reports the values of large-tw decay times τ for each distribution. These values

are obtained following the same protocol described in Subsection 4.2.3. Like for

the Markovian model, increasing the slider velocity results in fewer occurrences of

longer waiting times. It may also be observed that, as v increases, the waiting time

distributions, after a rapid exponential decay at short timescales, related to the vis-

coelastic rapid back-and-forth events, exhibit an non monotonic trend characterised

by a peak followed by the typical exponential decay at longer timescales. This peak

becomes more pronounced and shifts to lower tw as the dragging velocity increases,

as can be seen in the detail of the waiting-time distributions reported in Figure 4.9.
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Figure 4.9: Detail of Fig. 4.8 using a bin width of 0.1 t0,
from 0 to t0, and 0.2 t0 onward
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Figure 4.10: Same as Fig. 4.8, but for kb = 20 Ua−2.

In particular, the formation of this peak is due to the presence of a characteristic

waiting time tave in a minimum, namely the average time between two consecutive

minima at the dragging velocity v

tave =
a

v
, (4.5)

namely the inverse of the washboard frequency of the PT model.

Figure 4.10 shows the same comparison as Figure 4.8 using a different value of

the viscoelastic coupling spring kb = 20 Ua−2. The effect of a stronger coupling with

the viscoelastic bath is to keep the particle for longer times in the potential minima,

consistent with higher effective barriers see Fig. 4.2. Comparing kb = 15 Ua−2 and

kb = 20 Ua−2, the characteristic times τ undergo minor changes, see also Table 4.5.
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Velocity [Uγ−1a−1] Fit parameter τ [t0]

kb = 15 [Ua−2] kb = 20 [Ua−2]

0.01 52.8± 0.9 57± 1
0.1 6.9± 0.2 7.2± 0.1
0.2 2.86± 0.04 3.02± 0.09
0.3 1.66± 0.06 1.66± 0.02
0.5 0.60± 0.02 0.64± 0.02

Table 4.5: Large-tw decay time of the distribution P (tw)
for the non-Markovian Prandtl-Tomlinson model and two
different viscoelastic couplings kb.
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Figure 4.11: Same as Fig. 4.9, but for kb = 20Ua−2.
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4.2.5 Left and right barrier crossings

It is instructive to separately examine the distributions of crossings made to the

left (backward) and to the right (forward). We define the right crossing waiting

time as the waiting time in a minimum before a forward crossing occurs, namely

a displacement of at least 0.7 a forward. The left crossing waiting time is defined

similarly.

In particular, it is interesting to analyze left and right crossings waiting times

by varying the velocity from 0 to 0.5 Ua−1γ−1. As expected, for zero velocity the

distributions are practically identical, which is consistent with the fact that, under

’no-sliding’ conditions, there is no preferred direction for barrier crossings, and they

are evenly distributed in both directions due to thermal fluctuations.
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Figure 4.12: Leftward (squares) and rightward (triangles)
barrier crossings waiting-time distributions P (tw) for the
standard Markovian Prandtl-Tomlinson model for a few
values of driving velocity v
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Velocity [Uγ−1a−1] Leftward τleft[t0] Rightward τright[t0]

0.1 4.24± 0.07 4.46± 0.08
0.2 3.47± 0.06 3.52± 0.02
0.3 2.77± 0.09 2.77± 0.03
0.5 1.71± 0.04 1.77± 0.04

Table 4.6: Characteristic times for the leftward and
rightward-jumps waiting-time distribution P (tw) for the
Markovian Prandtl-Tomlinson model.

The standard Prandtl-Tomlinson model exhibits decreasing similar characteris-

tics times, but different ratios of barrier-crossing events as v is increased, thus a

different value of the prefactor. In both distributions the longer waiting times are

suppressed as v is increased, see Table 4.6.

The non-Markovian PT model instead develops a radical asymmetry in the left

versus right distributions, even at moderate speed. Specifically, we notice two very

different behaviors when considering the waiting time preceding a right barrier cross-

ing compared to that of a left crossing. When the crossing is performed to the right,

the characteristic time decreases as the velocity of the slider increases. However, for

the left crossing, the characteristic time remains relatively similar and much shorter

than that of the rightward jumps. For the rightward distributions we execute a

linear fit over the logarithm of the right-crossing waiting-time distribution, which

shows a single exponential decay on the long timescale. In contrast we fit the left

crossing waiting-time distribution with a short timescale a sum of two exponentials.

To evaluate whether the left crossing waiting times distribution exhibits a double ex-

ponential decay, we computed the waiting-time distribution from v = 0.01 Ua−1γ−1

to v = 0.5 Ua−1γ−1.

Note that the histograms in Figure 4.12 have a bin width of 0.1t0 from 0 to t0,

and then t0 onwards. Instead, the histograms in Figures 4.14 and 4.13 have the same

bin width, as Figure 4.12, in the initial region, but in the tw > t0 region, they have

different widths. For the histograms of waiting times before a rightward crossing,

the bin width is set to 1t0, while for the leftward waiting times, we adopt a bin

width of 2t0 to collect more of these rarer events, resulting in a sufficient number of

data points for a fair statistics.
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Figure 4.13: Same as Fig. 4.12 but for the non-Markovian
Prandtl-Tomlinson model with kb = 15 Ua−2.
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Figure 4.14: Same as Fig. 4.13 but for higher velocities.
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Velocity [Uγ−1a−1] Fit parameter τ [t0]

0.01 47.9± 0.9
0.05 12.6± 0.3
0.1 6.4± 0.1
0.2 2.67± 0.03
0.3 1.44± 0.02
0.5 0.560± 0.006

Table 4.7: Characteristic times for the rightward-
jumps waiting-time distribution P (tw) for non-Markovian
Prandtl-Tomlinson model with kb = 15 Ua−2

Velocity [Uγ−1a−1] Fit parameter τshort[t0] Fit parameter τlong[t0]

0.01 0.13± 0.01 63± 17
0.05 0.132± 0.008 7± 4
0.1 0.124± 0.009 3± 1
0.2 0.099± 0.005 −
0.3 0.097± 0.004 −
0.5 0.076± 0.005 −

Table 4.8: Characteristic times for the leftward-
jumps waiting-time distribution P (tw) for non-Markovian
Prandtl-Tomlinson model with kb = 15 Ua−2

In Figure 4.13, we observe the double exponential decay of the waiting times distri-

bution more clearly at lower speeds. Additionally, at slow driving the particle can

remain for tens of time units before performing a leftward barrier crossing. Table 4.7

reports the obtained characteristic times for the exponential decays of the rightward

crossing waiting-time distribution

Table 4.8 reports the characteristic times for the two-exponential decays of the left-

ward crossing waiting times distribution

As can be inferred from Figure 4.14 when the slider velocity exceeds 0.2 Uγ1a−1

the estimated characteristic time for exponential decay on long timescales has no

significance due to the scarcity of points.
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Figure 4.15: Instantaneous friction force for a few driving
velocities v in the standard Markovian PT model.

4.3 Velocity dependence of friction

In this section we investigate the friction force in the Markovian Prandtl-Tomlinson

model and its non-Markovian extension. Specifically, we address the driving-velocity

dependence. Section 2.1 illustrates the relation between the velocity of the slider

and the friction force of the standard PT model. In particular, in the high velocity

regime the time-averaged friction force is expected to a linear dependence on slider

velocity, while in a low velocity regime the friction force is expected to exhibit a

logarithmic dependence on slider velocity, see Eq.(2.4). In the Prandtl-Tomlinson

model, the friction force can be evaluated from the elastic force associated with the

elongation of the spring coupling the slider to the colloidal particle. This elastic

force is described by the equation

Fk(v, t) = K∆x = K(xslider − x) = K(vt− x) . (4.6)
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Here the slider position xslider is simply given by the product of its constant velocity

and time.

Figure 4.15 compares the time dependence of the instantaneous friction forces

in the standard Prantl-Tomlinson model, using K = 0.001 Ua−2, amplitude 2U

and lattice spacing a, for a few values of velocity, from v = 0.1 Uγ−1a−1 to v =

5 Uγ−1a−1.
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Figure 4.16: Instantaneous friction force for a few driving
velocities v in the non-Markovian PT model with kb =
15 Ua−2.

Similarly, Figure 4.16 compares the friction forces in the non-Markovian PT

model as a function of time for the same driving velocities, and for kb = 15 Ua−2.

In both these two figures, it is evident that initially the particle lags many length

units behind the tracer.

This initial transient needs to be omitted in the evaluation of the time-averaged

friction: we compute the average force starting after the end of the transient, when

the force stabilizes. As recalled above, in this regime, for the standard overdamped

PT model, the dependence of the friction force on velocity is linear, as verified
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Figure 4.17: Time-averaged friction force velocity-
dependence. Dot-dashed line: the T = 0 static friction.

in Figure 4.17. The non-Markovian PT model too exhibits a linear dependence on

velocity, but with a much larger slope,the result of the coupling with an environment

characterized by a higher dissipation coefficient γb compared to that of the particle

γ. We fit the friction data for v ≥ Ua−1γ−1 with this linear expression

F (v) = F0 + γ∗v , (4.7)

and report the resulting best-fit coefficients in Table 4.9.

kb [Ua−2] Slope γ∗ [γ] Intercept F0 [Ua−1]

0 0.92± 0.02 2.4± 0.1
15 7.945± 0.003 1.94± 0.01

Table 4.9: Best-fit coefficients for the linear velocity-
dependence of friction force at high velocity, according to
Eq. (4.7).
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Figure 4.18: Friction force as a function of time in the
Markovian PT model, in the low-velocity regime

Notice that the value of γ∗ in the standard Prandtl-Tomlinson model is slightly lower

than the thermostat parameter γ. This is the result of thermal fluctuations that help

the particle to escape the potential wells, with the result that friction is smaller than

one expects for the T = 0 PT model. On the other hand, the non-Markovian PT

model, shows an effective damping coefficient γ∗ ≲ γ + γb, thus slightly lower than

the sum of the friction coefficients of the colloidal particle and of the viscoelastic

bath particle. Regarding the velocity-dependence of the friction force in the more

interesting low velocity regime, we conduct only a preliminary study is conducted

due to subtle difficulties associated to numerical data analysis. Specifically at very

low velocity, under 10−3 Uγ−1a−1, the effects of stochastic thermal forces cause the

particle to jump from one minimum to another, with the dragging-forward dynam-

ics remaining a minor, perturbative effect. Figure 4.18 illustrates how already at

v ≃ 10−2 Uγ−1a−1 or 10−3 Uγ−1a−1, the friction force fluctuates widely: these fluc-

tuations are comparable in size to the average friction force itself, or even larger. As
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Figure 4.19: Friction force as a function of time in the non-
Markovian PT model, in low velocity regime.

a result, extracting a significant friction force from the time average rapidly becomes

a formidable task, that would require extremely long simulations to average out the

thermal noise.

For v < 0.01 Uγ−1a−1 outlined above where diffusion dominates over driving,

we choose to perform a time averaging without omitting any transient, which is not

well-defined, and to carry it out over the entire simulation time, which we extend

from a minimum 106 t0 up to 2 · 107 t0, depending on the slider velocity. This choice

is made for the standard Prandtl-Tomlinson situation, which can be seen in Figure

4.18.

In the scenario of non-Markovian Prandtl-Tomlinson, Fig. 4.19, due to the coupling

with a more strongly damped environment, the friction force is more stable over

time. This leads to a more reliable and computationally simpler determination of

its value even in the low-velocity regime. This figure allows us to appropriately select

the transient part to be excluded from the temporal averaging of the friction forces.
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Figure 4.20: Same as Fig. 4.17, but with velocity in loga-
rithmic scale.

It is observed that this quantity increases significantly as the velocity decreases,

reaching 106 t0 for v = 10−3 Ua−1γ−1.

Figure 4.20 compares the velocity dependence of the time-averaged friction force

for both the Markovian and non-Markovian PT models as a function of the driving

velocity in log (v) scale, across a broad velocity range. This figure also includes the

value of the static friction force Fstatic calculated in Section 2.3. We observe that

in the low-velocity regime, the time-averaged friction force deviates from the linear

variation appropriate for large velocity, but exhibits a much slower variation. For

the standard PT over a limited range, the expected velocity-dependence is verified

(Fig. 4.21) with a curve fit in the following form

F (v) = f − a log

(︃
b

v

)︃ 2
3

, (4.8)

Table 4.10 reports the best-fit parameters. For the non-Markovian PT model Figure

4.21 indicates that it may be necessary to repeat the calculations for smaller velocity
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Fit parameters

f [Ua−2] a [Ua−2] b [Ua−1γ−1]

0.03± 0.02 0.05± 0.03 0.010± 0.001

Table 4.10: Best-fit coefficients for the velocity-dependence
of friction force in low-velocity regime.

v to verify the low-speed behavior of the model.
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Figure 4.21: Same as Fig. 4.20, detail of the low-velocity
range.
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Chapter 5

Conclusion

In this thesis we investigate the overdamped dynamics of a colloidal particle in a

viscoelastic bath, namely an environment characterized by memory effects. From

our simple implementation to include a non-Markovian environment in the Prandtl-

Tomlinson model, some results and considerations for future developments have

emerged, which we summarize here.

We found that the effect of the viscoelastic bath is an increase of the poten-

tial barrier experienced by the particle compared to the standard Brownian case.

This increase of the effective barriers affects the waiting-time distributions. This

effect is clearly visible at the level of the distribution resulting from standard Brow-

nian diffusion and non-Markovian Brownian diffusion. In the standard PT model

the waiting-time distribution follows an exponential decay. Instead, in the non-

Markovian case, we observe a sum of two exponentials, with two radically different

characteristic times. At short times, the distribution exhibited a very rapid decay

reflecting the fast barrier crossing events caused by the coupling with the viscoelastic

bath. In the longer timescale, the distribution shows that the particle can remain

in a potential well for many time units before a barrier crossing event occurrs. Our

study reveals how a stronger coupling of the particle with the viscoelastic bath leads

to an increase in the characteristic time on the long timescale, whereas on the short

timescale, the characteristic time is reduced due to the larger restoring force exerted

by the bath particle. Furthermore, we observe that the characteristic long timescale

decreases with increasing temperature.

The waiting-time distributions for the standard Prandtl-Tomlinson model and

for its non-Markovian extension at finite driving velocity are also quite instructive.
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Specifically a non-monotonic distribution, with a peak forming around the typical

time spent in a potential minimum, determined by the ratio a/v (the washboard fre-

quency) between the distance of two consecutive minima and the dragging velocity.

The main nontrivial features brought to the waiting-time distribution by the

non-Markovian model are: (i) the survival of a short-time fast exponential decay

related to the fast back-and-forth events promoted by the viscoelastic nature of the

thermostat; (ii) a far slower exponential decay of long residence times compared to

the regular memory-free model. A separation between the forward (rightward) and

backward (leftward) jump events also shows a quite distinct features brought by the

memory thermostat.

Finally, we carried out a preliminary investigation of the velocity dependence

of the time-averaged friction force in both the standard PT model and its non-

Markovian extension. We covered in some detail the trivial high-velocity regime,

where both exhibit a linear trend, albeit with a different slope, associated to the

extra viscosity brought in by the fake particle modeling viscoelastic effects. We also

carried out a preliminary analysis of the low-velocity regime, which proves to be

more computationally challenging.

This thesis provides a few important, but preliminary milestones to the investi-

gation of memory effects in the PT model.

We have shown that the simple addition of the viscoelastic bath increases both

the effective corrugation, relevant at low velocity, but also the high-velocity viscous

friction. For a fair comparison with regular memory-free model an important step

will require determining a recipe for the model parameters that would allow a fair

comparison of the two thermostats.

Once this task is achieved, several extension of the present investigation are en-

visageable. In particular it will be interesting to verify if in the small-velocity regime

the regular logarithmic dependence of friction on velocity is retained or modified.

However for this task very long simulations will be necessary.
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