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Abstract

We investigate the total energy of a hexagonal 2D elastic monolayer
interacting with a rigid decagonal quasicrystalline corrugation potential,
as a function of their mutual alignment angle. We compare the effec-
tiveness and applicability of several standard numeric optimization tech-
niques, addressing specifically the issue of identifying the optimal angular
orientation. We compare our numerical findings with an extension of the
Novaco-McTague theory of epitaxial alignment.
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1 Introduction

1.1 The Frenkel-Kontorova model

One of the models apt to describe nanofriction is the Frenkel-Kontorova model
which, in its simplest formulation, consists of a 1D chain of atoms, interacting
with a fixed sinusoidal potential. The Hamiltonian of the interacting system is:
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where a . is the rest length of the adsorbate bonds, and a,; is the characteristic
length scale of the substrate potential. The properties of the system depend on
the competition of these two length scales expressed by the mismatch ratio p =

@pot/Acon that can be visualized as the number of atoms per potential well. Now
if p is any integer, a lattice-matched state, the friction is maximum as moving
the chain requires climbing all of the potential wells simultaneously. Adding
or removing particles to a lattice-matched state causes topological excitations
such as kinks, antikinks or solitons. As long as p is a rational number, pinning
and therefore a nonzero static friction is predicted.

If p is irrational instead, which can only occur in the N — oo limit, the
resulting incommensurate configurations exhibit a rich phenomenology and are
characterized by non-periodic spatially modulated structures. For incommen-
surate systems the crucial parameter is the dimensionless coupling parameter:

5 (2)

Intuitively speaking, when g > 1 it is very costly for any particle to move across

potential wells, while it is comparatively cheaper (energy-wise) to locally deform
the chain with the chain particles moving very close to the sinusoidal-potential
minima. In such condition it takes a large force to unpin the chain and set it
into motion: for this reason such states are pinned, like in the commensurate
case. On the other hand, when g << 1 the set of ground state configurations
is continuous, such states are referred to as sliding because the chain can be
set into motion by any arbitrarily small driving force, a condition of vanishing
static friction called superlubricity[i].

The Frenkel-Kontorova model is a useful tool to understand several key
problems in the physics of friction and in other fields of research, but its 1D
nature renders it inadequate to describe surface-surface interactions. 2D prob-
lems indeed add a new degree of freedom to the system, as the ground state
energy generally comes to depend on the relative orientation of the adsorbed
and surface layers.



1.2 The Novaco-McTague theory

Following the Novaco-McTague approach [2] 3], we consider a harmonic crys-
talline monolayer, with Hamiltonian:
p° 1
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where u; =r;—R; is the displacement from the lattice equilibrium position R;
and ¢ is the Hessian matrix of the interaction. For simplicity, following Novaco-
McTague [2, 3], we assume that the atomic displacements are restricted to the
"horizontal” 2D z —y plane, while "vertical” z displacements are prohibited. The

adsorbed layer then interacts with a fixed surface potential:
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where Vj is the potential amplitude, ayo; is the characteristic length scale of

2
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the potential, k denotes a reciprocal vector generating the potential, pointing
to the vertices of a regular polygon:

o (e o

and G are the vectors connecting the Ny(N; — 1) pairs of k:

vm,m'€1l,..,Ng:m+#m' G=k,, —k,,. (6)

Removing the constant additive term in Eq. , we are left with a zero-
average potential:

V(r)= N2 e 1CGT = _]‘\% ;COS(G -T). (7)

G
In the last passage we take advantage of the fact that, in the summation, every
G has an opposite partner —G, leading to the cancellation of the imaginary
parts. In summary, the Hamiltonian of the interacting system is:

H=Hy+ ZV(rj). (8)
J

For small displacements, e G ~1-4G-0,. Ifin H, we neglect the kinetic

j.
term (and therefore all quantum effects), the ground state of the system is
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Figure 1: a) The k vectors of the potential’s reciprocal lat-
tice and the geometric construction to obtain the G vectors.
b) A sketch of the 20 G vectors.

obtained by minimizing the total potential energy. The result valid in the limit
of weak coupling (Vy — 0) is the following:
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where R is the origin of the adatom lattice, T denote crystal reciprocal lattice
vectors, €q s and wq ; are the phonon polarization vectors and phonon frequen-
cies. Here s = L,T labels the longitudinal and transverse modes, obtained by
the usual diagonalization of the Fourier-transformed dynamical matrix:

D(q)eq,s = a)c21,s€q,5‘ (10)

The original Novaco-McTague theory considers a crystalline potential, such
as the one obtained for Ny = 3 or 4. However this theory is generalized in a
straightforward fashion for the quasiperiodic case by taking Ny = 5. In this
condition, the generating polygon is a regular pentagon, and the G vectors
containing the Fourier components of the potential form 2 concentric regular
decagons, as illustrated in Figure [1]

Our work seeks to validate these results in the case of a harmonic triangu-
lar lattice interacting with a pentagonal quasicrystalline surface. This is a step
towards validating the results obtained in several studies of the frictional prop-
erties of this system|[4] 5] 6], (7], all of which depend on the accurate individuation
of the static ground state.
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Figure 2: A 1-dimensional sketch of the total potential as
a function of a fictitious displacement coordinate, for 4 dif-
ferent and increasing values of the amplitude V; of the qua-
sicrystalline substrate corrugation. When the corrugation
contribution remains within the perturbative range there
still is one single global minimum, adiabatically connected
to the unperturbed one at w = 0. As the corrugation am-
plitude V, further increases, the landscape starts to exhibit
local minima and eventually the global minimum loses any
connection to the unperturbed state.

2 The model

Our model consists of a 2D colloidal monolayer interacting with a decagonal
quasi-periodic substrate. The Hamiltonian of the system is given by Eq. .
Let us denote the colloidal-colloidal interaction with U,... Even though a re-
alistic interaction between colloids is usually modeled by a highly anharmonic
potential such as the Yukawa one [8], to avoid anharmonic effects in comparing
with Novaco-McTague’s theory we consider it to be harmonic:

Te= 3 2

2
ri_rj| _acoll> ) (11)
,J

where the spring constant X = 0.2zJum ™2 is coherent with previous works
where the particles where considered as point-charges interacting through a
(highly anharmonic) screened Coulomb potential[9, [10].

For V; =0 we expect the only stationary point of the total energy of the
system to be the absolute minimum of the colloid-colloid harmonic potential,

6
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Figure 3: Red hexagon: first Brillouin zone of the trian-
gular lattice, for a.,; = 5.8um. Dots: successive locations
of the q points obtained by Eq. , as the G vectors of
the quasicrystalline potential are rotated from 0° (red) to
6° (purple) counterclockwise. Each of the 20 G points gen-
erates one of these q points through Eq. (12). Panel (a):
@pot = 5.211m, highly mismatched; Panel (b): apet = 5.4um,
less mismatched at the optimal angle.

i.e. the perfect crystalline state. As V{ increases, the competition between U,
and V can give rise to other local minima. However, as long as the amplitude
V, remains within a small range where the quasiperiodic potential can be con-
sidered a weak perturbation to a very rigid crystal, the minimum is still unique
and adiabatically connected to the perfect crystal configuration. See Figure
for a sketch of this situation. This weak-coupling regime is the one that is

described by the Novaco-McTague theory.

The natural energy scale for this system is K afou. For the adopted value

acon = 5.8um and K = 0.2z], the energy scale is Ka,go11 =6.728zJ. In the present
2D model the dimensionless coupling parameter, analogous to the Frenkel-
Kontorova g parameter, is Vy/(Ka2 ).

The decagonal symmetry of the potential, coupled with the symmetries of
the triangular lattice, reduces the angular range to study to 12°, which can be
further reduced to 0° — 6° by noting the angular inversion symmetry 8 — —6 in
the potential.

To apply the extended Novaco-McTague’s theory Eq. @D we are interested
in the difference between its G vectors Eq. @ and the vectors of the colloidal



reciprocal lattice, . Due to the delta condition in Eq. @D we identify
a=G-r. (12)

We propose to study the incommensurate case, so the two length scales a,,; and
a0y have to be such that VG, 1,6 :q # 0. Here 6 is the mutual-orientation angle
by which the corrugation potential (and thus the G vectors) is rotated relative
to the crystalline principal directions of the colloidal lattice. For the adopted
value apy = 5.2pm, Figure [3a shows that, for any mutual-orientation angle,
q remains well clear from 0. The alternative choice apo; = 5.4um, Figure ,
shows that, at the optimal angle, g comes substantially closer to O: this is still
an incommensurate geometry, which comes nearer to commensurate.

3 Technical implementation

In this chapter we present the technical implementation of the simulations of
the physical system described in Sect.[2l We cut a circular sample out of a large
portion of a triangular lattice with spacing a.,;. To mantain a good control
of the angular orientation of the adsorbate layer and to avoid unwanted twists
or scale deformations, we choose to rigidly set the positions of the atoms at
the edge of the sample to perfect-lattice positions. The total potential energy
is therefore a function of the z and y coordinates defining the positions (or,
equivalently, the displacements) of all colloids inside this rigid ring. Our task is
to minimize this function, for different values of the mutual angular orientation
0, fixed by the external rigid ring.

The problem of finding the global minimum of a complicated multidimen-
sional function is recurring in many fields of science and several methods have
been developed to solve it; some of these algorithms rely on molecular dynam-
ics to explore the potential landscape, while others are inspired by real-world
processes that lead to the formation of large scale ordered structures. Our
simulations make use of LAMMPS’ [11] implementation of several well-known
minimization algorithms which will be discussed in detail in the following sub-
sections. Each of these algorithms is formulated in such a way that it terminates
when the difference in energy between two consecutive steps or the absolute
value of the force becomes lower than two respective thresholds defined by the
user. In our simulations we decided to only set force thresholds, that we fixed
as a small fraction of the typical force V/ayqt, associated to the corrugation
amplitude Vj.

To avoid incurring in local minima different from the global ground state,
we apply multiple minimization techniques, including those capable of overcom-

8



ing the barriers between minima. We also compare and discuss the effectiveness
and applicability of the various methods to the problem at hand.

3.1 Steepest descent

Steepest descent is probably the simplest method for minimization in multiple
dimensions. It consists of a sequence of line minimizations along the direction
of the local downhill gradient.

3.2 Conjugate gradient

The conjugate gradient method is different from steepest descent insofar as it
computes new minimization directions so that they are conjugate to the old
gradient[12].

Let f : RY — R be the function to be optimized, let P € RY be a particular
point chosen as the origin of the coordinate system, then f can be approximated
by its Taylor series:

f(x)=f(P Z :z:i—l—l % i ixlmﬁ— = c—b-x+lx-A-x+o(HxH3)
2= o oztow 2 ’
(13)
where
¢:= f(P) b::—Vf‘ A= 2F | (14)
’ p’ 77 oztoxd b

By differentiating Eq. (13)), the gradient of f at x is easily calculated as Vf(x) =
A-x—Db. Now consider two directions u and v: the condition that a minimiza-
tion along v does not spoil a previous minimization along u is that the gradient
has to still be perpendicular to u after such minimization, i.e. that u and v are
conjugate:

0=u-6(Vf)=u-A-(6x)=u-A-v. (15)

When this relation holds pairwise for all members of a set of vectors, they
are said to be a conjugate set. LAMMPS implements the conjugate gradient
algorithm attributed to Polak and Ribiere[13]. We note that we realized that
this method performs better when setting energy thresholds rather than force
thresholds.

3.3 Quickmin

The Quickmin algorithm improves upon the steepest descent method by ac-
celerating the system in the direction of the force. It consists of a damped

9



dynamics routine, where the damping factor is the projection of the velocity
along the force. In LAMMPS this method is coupled with an Euler integrator,
as described in [14]: first it projects the velocity in the direction of the force:

Fj) F;
v.= v, —L (16)
’ <] 73]/ |F5]

i

then, before taking a step of the integrator, if v;-F; <0 it sets v; =0.

3.4 FIRE

FIRE[15], short for Fast Inertial Relaxation Engine, is a minimization algorithm
based on the discrete version of the equation:

. F v(t) F(¢)
()= 33 -y OO (o)~ g ) (17)
M v@®)  [F (@)
where F = —VU(x), M is the mass of the atom considered, v =X is its velocity,

U is the potential. The last term in the right-hand side of Eq. allows one
to introduce an acceleration in a direction which is steeper than the current
direction of motion, when the power P(t) = F(t)-v(¢) is negative the velocity
is reset to O, the velocity is further mixed with the force vectors according to
the following equation:

v:(l—a)v—i—a%lw (18)

which results in an Euler discretization of the last term in Eq. , where
o = yAt and At is the integration time step. Both the time step and the
mixing coefficient o are dynamically adaptive quantities.

We use LAMMPS’ default values for most parameters of the algorithm,
except for the time-step which we set to 500ms because for any longer timestep

the minimization would endlessly fluctuate. For a more thorough discussion of
the implementation of FIRE in LAMMPS, we refer to Ref. [16].

3.5 Simulated annealing

All algorithms described so far lead from the starting point to the closest (local)
minimum, the one sitting inside the same basin of attraction. If a deeper
minimum, perhaps the global one, sits further away, none of these methods has
any way to discover it. The simulated annealing method is a way around this
problem, and a significant step in the quest of a global minimum.

10



The simulated annealing technique is inspired by the homonymous metal-
lurgical process of heating up a solid and then cooling it slowly until it crystal-
lizes. It is a stochastic method that ensures the convergence of the system to
the global minimum, in the limit of infinite cool-down time. After thermalizing
the system at an initial temperature Ty the system is cooled down in steps until
T =0K. As long as kgT is of the order of or larger than the energy barrier
between minima basins, the exploration has a nonzero probability to transition
from the current basin to another basin. Even though at finite temperature the
system can hop from the basin of a minimum to that of a less deep one, if the
temperature reduction is carried out extremely slowly, one is certain that the
minimization will land at the lowest minimum, the true ground state.

The choice of initial temperature is particularly delicate, because it needs
to be sufficiently high to promote barrier hopping, but at the same time not
too high that it completely disorders the sample, which would make it very
costly to cool down to the proper minimum. Assuming that in our problem the
barrier height is of the order of V;, we adopt an initial temperature T, such
that kgTy = 10%V,.

The results of finite-time simulated annealing procedures could depend on
the adopted cooling schedule. We tested the following schedules:

e Geometric schedule: T}, = 85T}, where 3 € [0.8,0.99]
e Linear schedule: Ty, =T} — AT where AT is a constant decrement

e BExponential schedule: Ty, = Tke’ﬁ% where 8 > 1 and N is the total
number of linear annealing steps taken

where T, is the temperature at the k-th step of the cooling schedule. To ensure
the complete relaxation of the crystal, after the simulated annealing procedure
we run FIRE.

3.6 Numerical protocol

In order to investigate the Novaco effect, we need to be able to compare the
T = 0K configuration for numerous mutual rotations between the adsorbate
layer and the fixed corrugation potential. For practical purposes, rather than
keeping the crystal fixed, and rotating the potential by an angle 8, we proceed
the other way round, which is perfectly equivalent. We minimize each rotational
configuration separately and then collect the relaxed energy differences from
each of them in order to compare them to the prediction of Eq. @D See Table
for a summary of the values of parameters used in this work.

11



Physical quantity Value
Qpot 5.2pm or 5.4pm
Qcoll 5.8pm
m 31.0593pg
KaZ, 6.7282J

Table 1: Parameters characterizing our simulations

T
N=9407 ——
N=147991 - - - -

0.0008
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0.0002

U/N/ Vo

-0.0002

-0.0004

-0.0006

0 [degrees]

Figure 4: Angular energy fluctuations due to the finite size
of the rigid sample. The unrelaxed energy per particle is
compared for samples of different size.

4 Results

4.1 Finite-size effects

The Novaco-McTague theory, Sect.[1.2] is developed under the assumption of an
infinite adsorbed crystalline layer interacting weakly with an infinitely extended
potential. Of course our simulations do not fall within the bounds of these
assumptions, so before discussing any results we must quantify the effects of
the finite size of our samples on the computed energy.

Due to our choice of zero-average potential, we can predict that the corru-
gation energy at a randomly placed point vanishes on average. Since the points
in the perfect crystal are unrelated to the quasicrystalline potential, they can
be seen as random sampling of the latter. Therefore the mean energy per par-
ticle of the rigid (unrelaxed) crystal should vanish in the infinite-size limit. As
seen in Fig. 4] the fluctuations around the mean energy decrease in amplitude

12
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Figure 5: Maximum amplitude of the angular energy fluctu-
ations due to the finite size of the rigid sample, calculated as
maxge(os,67 U — Mingeoe 62 U, fOr apoy = 5.2pm. As expected

the energy per particle decreases as N —1/2

and increase in frequency as the size of the sample increases. We expect these
finite-size effects to be proportional to the number of atoms at the edge of the
sample, which in turn is proportional to v/N, where N is the total number of
particles. Figure |5 indeed shows that the normalized amplitude of the energy
fluctuations is compatible with N ~1/2.

In order to mitigate these finite-size effects, rather than absolute potential
energies, we will report differences between the minimized energy and the initial
unrelaxed value (namely the energy of the rigid crystal) at the same angle. It
makes sense to compare these energy lowerings directly to Eq. @) because the

substrate potential Eq. has zero average value.

4.2 Small corrugation range

Beside finite-size effects, we must determine the values of V for which the
corrugation can be considered small when compared to the adsorbed layer’s
bond energy. In the small corrugation regime we expect a quadratic response
in the potential amplitude V,, Eq. @; therefore we evaluate the relaxation
energy as a function of the corrugation potential amplitude. Figure [6] shows
that corrugations g =V /(K a2 ;) < 0.1 fall well within the weak-coupling range.

13
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Figure 6: The relaxation energy as a function of the cor-
rugation potential amplitude V), at the optimal misfit an-
gle 0 =4.2° for acoy = 5.8um, aye = 5.2pm. The Novaco-
McTague theory predicts a quadratic response in V;;. These
results indicate that such quadratic dependence holds for
dimensionless coupling strength of the order of 107! or
smaller.

4.3 Comparison of minimization methods

For corrugations exceeding g > 0.1, we cannot be certain that our minimizations
do not fall into one of these non-global minima, so we compare the results
of different minimization algorithms, or apply them repeatedly to the same
sample.

As shown in Figure |[7| FIRE and Quickmin lead consistently to identical
minima in one single run, while CG turns out to be far slower. After these
tests, we adopted the FIRE method as the most efficient one.

4.4 Simulated annealing

After experimenting with deterministic minimization algorithms, we tested dif-
ferent simulated annealing schedules to see if they would yield better results.
At the end of simulated annealing procedures we always finalize the relaxation
to the nearest local minimum by using FIRE. We used LAMMPS’ Langevin
thermostat to control the temperature and ramp it down linearly, we then com-
bined multiple linear temperature ramps to emulate more sophisticated cooling
schedules.

14
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Figure 7: The energy of the relaxed system as a function
of the misfit angle 6 with V; = 0.00148Ka3011, Qpot = 5.21m
and N = 147991. Panel (a): CG stops according to an energy
threshold of 1 x 10782J, or after 100000 minimization steps,
clearly not reaching convergence. Panel (b): FIRE and
Quickmin stop according to a force threshold of 1 x 10713 N,
or after a runtime of 50ms while and clearly lead to the same

well-converged energy.

All of the different cooling schedules produce the same result obtained by
FIRE minimization, as shown in Figure 8| Furthermore we choose to repeat
the linear simulations using different seeds for the Langevin random number
generator, in order to further our confidence in the accuracy of the minima
found (Figure [9).

4.5 The Novaco-McTague angle and distortion pattern

After testing different minimization methods to identify the most suitable one,
we compared the results with the linear-response expression Eq. @ as a func-
tion of the misfit angle. The comparison is shown in Figures [11] The
minimizations show a quite good nearly quantitative agreement with the weak-
coupling theory. A priori one would expect the numerical minimization results

15
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Figure 8: Comparison of the energy of the system as a func-
tion of the misfit angle 6 after simulated annealing for dif-
ferent cooling schedules. Both linear and geometric cooling
schedules give the same results as the FIRE minimization.
Parameters for these simulations are the same as in Fig.
with kgTy = 1.48 x 10 %Ka?2;; = 0.1V},
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Figure 9: The relaxed energy of the system after simulated
annealing as a function of the misfit angle, the figure shows
results of the same linear annealing schedule with different
seeds for Langevin’s random-number generator. The simu-
lation parameters and annealing temperature are the same

as in Fig.
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Figure 10: The numerically relaxed total potential energy
per particle as a function of the mutual alignment angle
0, compared to the weak-coupling energy profile calculated
according to the extended Novaco-McTague theory Eq. @D
The simulation parameters are V; = 0.00148K afon, Qpot =
5.2pm and N = 147991.

to sit at a lower energy than the approximated one-phonon energy, but the
opposite is observed.

The more closely matched the geometry the more prominent we expect
the Novaco-McTague minimum to be, given that Eq. @ depends on the inverse
square of the phonon frequencies. We repeated the simulations setting a,q4 =
5.4pm, which results in the q vectors sketched in Fig. Bb, showing that as
theta is varied, at its closest approach q comes closer to the origin than for
apot = 5.2um (Fig. ) Indeed the resulting angular energy profile shown in
Figure (11| exhibits a much deeper minimum than for a,; = 5.2pm, Fig. The
optimal Novaco-McTague angle Oy =~ 4.12° for ape; =5.2pm, and Oy ~ 5.31°
for apey = 5.4um, evaluated through Eq. @D

For each angle, the Novaco-McTague theory predicts the precise amount
of distortion for each of the 20 phonon modes whose q satisfies Eq. . The
largest distortion will typically be associated to the softer of these phonons,
the long-wavelength one associated to the shortest q = qp,;,. Figure 12| reports
two relaxed configurations at the optimal 6y);. Each particle is colored in a
way representing its displacement away from the perfect crystal. The observed

17
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Figure 11: Same as Fig. , but for a,.; = 5.4pm, leading
to a smaller mismatch at the optimal angle 6y ~ 5.31°.

displacements are consistent with a dominating phonon wave associated to q;,,
sketched by the corresponding wave fronts. We find a visible agreement between
this wave and the observed moiré pattern of displacements.

5 Discussion and Conclusion

In this thesis we solved several practical problems that haunted previous works
in this field (see Appendix . As a main result, we verify quantitatively the ex-
tension of the Novaco-McTague theory to the quasicrystalline case for the first
time, see Figures[10], We also visualize the distortions associated to the op-
timal Novaco-McTague angle, proving that they involve significant components
of the shortest-q phonons involved.

Small residual differences between the Novaco-McTague weak-coupling for-
mula, Eq. (@, and the results of the numerical minimizations could be due to:

e the fact that the adopted coupling, though relatively small, is finite;
e the finite size of the simulated sample.

Even though verifying these hypotheses would be straightforward, for time
constraints we defer these verifications to future work.

The tested minimization methods would allow us to investigate even stronger-
coupling regimes with g > 1, with the need for the search of nontrivial global
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Figure 12: Displacement pattern in the fully-relaxed state
at the optimal misfit angle 6y);. The black particles at the
edge are the fixed ones, see Sect. |3l The mobile particles in
the sample are colored based on their displacement from the
perfect crystal configuration: the more intensely colored the
particle, the greater its displacement. Blue lines: wavefronts
generated by the shortest g vector. Panel (a): apet = 5.21um,
0 ~4.2° ~ Oy; Panel (b): acop =5.4pm, 6 ~ 5.3~y -

minima. For the same time constraints, we defer also these investigations to
future work.
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Figure 13: Panel (a): Energy, Eq. (9), as a function
of the relative orientation angle 8 for K = 2K ayvmps =
0.2zJum~2, which is the correct value. Panel (b): Same
as (a) but for K = Kyapmps = 0.1zJum~2 which does not
take into account the nonstandard definition of the spring
constant in LAMMPS. All of the other parameters are as in
Table [1}, with ape; = 5.2 um.

A Problems found in previous works

The extended Novaco-McTague theory predicts the energy in Eq. @ Comput-
ing this energy numerically presents a number of challenges that we summarize
in this appendix. Previous works on this topic [4, 5| 6], 7] reported wrong or
excessively approximated calculations that led to quantitative deviations.

First of all we note that previous works that used LAMMPS to perform
minimizations failed to notice the nonstandard definitions of the harmonic con-
stant, referred to as K in our work, of LAMMPS differ by a factor of 2:

2
Uee = Krammps ) . <| r—1;| - acoll) =[17] (19)
1,J

X )
:EZ(‘ri_rj‘_aCC‘H)Q. (20)
27.7

As shown in Figure [13|this error results in qualitatively similar plots but
quantitatively different energies.

In Figure one can notice two discontinuous points at 8 = 2.2°, and
6 =6.0°. Zooming in onto these discontinuities (Figure proves that they are
not merely an accident dictated by the wide sampling.
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Figure 14: Zoom ins to Fig. . Panel (a): artifact discon-
tinuity in the energy profile at # = 6.0°. Panel (b): Artifact
discontinuity in the energy profile at 8 = 2.2°.

The jump at 8 =6.0° is to be attributed to the incorrect identification of
the q vectors in the first Brillouin zone of the crystal reciprocal lattice. As
shown in Figure [3, as the misfit angle changes certain q values cross one of the
boundaries of the first Brillouin zone, so one needs to be particularly careful to
avoid numerical errors when calculating whether or not any of them is inside the
first Brillouin zone, any errors in this regard may result in an undercounting,
as for 8 =6.0° that affects the energy evaluated according to Eq. @ We fixed
the code that evaluates Eq. @ in such a way to evaluate correctly the presence
of individual q vectors in the first Brillouin zone.

Furthermore we acquired the original code for the calculation of Eq. @D,
as was used in previous works [4], 5, 6, [7], and it assumed approximate "Debye”
phonon polarizations:

T
q (—qy,9z)
€qL =y €qT= -, (21)
g [<1

and phonon frequencies:

C‘)s(q):ws(|q|):cs|Q|aforSZL;T~ (22)

We decided to improve the code by adopting the exact phonon polarizations
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Figure 15: Comparison of the energy profiles obtained after
fixing the undercounting problems by properly checking the
bounds of the first Brillouin zone. All of the parameters are

as in Figure .
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Figure 16: Comparison of the angular energy profile ob-
tained by linearly approximating the phonon frequencies
Eq. and polarization vectors Eq. (red) with the
one calculated using the exact frequencies and polarization
vectors obtained by numerically diagonalizing the dynamical
matrix Eq. (blue). Dots: the results of the numerical
minimization as discussed in Sect. [4], for the same parame-
ters apot =5.2nm, based on a N = 147991 sample.
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and frequencies obtained by diagonalizing the dynamical matrix:

K [3—cos (%5l sin (%) —2cos (%&5el)  /3sin (%5l sin (‘/gqga“’“)

D(q) = E . a. . \/gq Qcoll a, \/gq Qcoll )
V/3sin (%= sin ( o ) 3—3cos (&=l cos (75 co )

(23)

Indeed Figure shows that this improvement removes the discontinuity at

0 = 2.2° and results in a qualitatively similar, but significantly different curve.

Moreover, the quantitative agreement with the numerical results improves dra-
matically as the exact phonon frequencies and eigenvalues are adopted. The
analytic weak-coupling curves reported in Fig. are all obtained using this
improved evaluation code.
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