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Abstract

We study a model consisting of a crystalline monolayer with hexag-

onal symmetry in contact with a decagonal quasicrystalline potential, at

the optimal angular orientation according to the extension of the Novaco-

McTague theory to the case of a quasicrystalline potential. Through FIRE

minimization and Simulated Annealing, we obtain a well-relaxed config-

uration of the monolayer, which is used as the starting configuration for

the friction analysis. The frictional properties of the monolayer are then

studied using molecular dynamics simulations, exploring the Aubry-type

transition between a superlubric state and one characterized by a finite

static friction force.
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1 Introduction

1.1 The Frenkel-Kontorova model

The frictional properties at the contact of two periodic interfaces have long at-

tracted interest in research, and various models have been developed for the study

of these systems. The Frenkel-Kontorova (FK) model is the simplest model used

to described a 1D chain of interacting particles on a periodic potential substrate

[1, 2]. The simplest formulation of FK model consists in a chain of particles in

a sinusoidal potential, interacting harmonically with their first neighbours. The

Hamiltonian for this model is:

𝐻 =

𝑁∑︁
𝑖

[︃
𝑝𝑖

2𝑚
+ 𝐾

2
(𝑥𝑖+1 − 𝑥𝑖 − 𝑎𝑐𝑜𝑙𝑙)2 +

𝑈0

2

(︃
1 − cos

(︃
2𝜋

𝑎𝑝𝑜𝑡
𝑥𝑖

)︃)︃]︃
, (1)

where 𝑎𝑐𝑜𝑙𝑙 is the rest distance of the harmonic interaction and 𝑎𝑝𝑜𝑡 is the potential

spacing. From here we can define a mismatch ratio 𝜌 =
𝑎𝑝𝑜𝑡
𝑎𝑐𝑜𝑙𝑙

between the number

of particles and the potential wells. The case 𝜌 = 1 describes a lattice-matched

system, with one particle in each well.

A kink or soliton is the topological excitation caused by an addition of a

particle to this chain. The presence of an additional particle would result in

two particles being placed inside the same potential well. Once the particle is

added to the chain, it pushes out of their wells few surrounding particles and the

equilibrium configuration is characterized by a local compression of the chain - a

kink; on the other hand, the subtraction of a particle leaves a well empty and the

equilibrium configuration is characterized by a local expansion of the chain, called

antikink. Kinks and antikinks push particles out of the minima of the substrate

potential, allowing them to move easily in response to an external driving force.

As the FK model can be solved exactly in the continuum approximation, it has

been long adopted as the standard model in describing soliton excitation.

A particular case of interest is given by that in which the ratio 𝜌 is an

irrational number, known as an incommensurate case. In the incommensurate

case, the FK model shows an interesting transition as a function of the potential

height 𝑉0. Below a well defined value of 𝑉0 the chain can slide freely over the

substrate under the action of an arbitrarily small driving force, i.e. the static

friction 𝐹𝑠 vanishes. This condition is called superlubricity. In contrast, above

the critical value, the system shows a finite 𝐹𝑠 which must be overcome to start

sliding. This transition, defined as transition by breaking of analyticity, was

studied in great detail by Serge Aubry [3, 4], and it is therefore widely known as
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the Aubry transition. The parameter

𝑔 =
𝑉0

𝑘𝑎2
𝑐𝑜𝑙𝑙

(2)

represents the relative amplitude of the corrugation potential respect to the natu-

ral energy unit of the colloid lattice. If 𝑔 ≫ 1, more particles are located near the

bottom of potential wells, therefore requiring a very large force to force them out

of the potential barrier and move the chain globally. On the contrary, if 𝑔 ≪ 1,

particles composing the chain can be easily dragged by weaker forces, producing

a sliding motion.

1.2 The Novaco-McTague theory

We consider a 2D harmonic crystalline monolayer, having the following Hamilto-

nian

𝐻0 =
∑︁
𝑗

p2

2𝑀
+ 1

2

∑︁
𝑗 , 𝑗 ′

𝜙𝛼𝛼
′

𝑗 , 𝑗 ′u 𝑗 ,𝛼u 𝑗 ′,𝛼 (3)

where u 𝑗 = r 𝑗 − R 𝑗 is the displacement from the equilibrium lattice positions r 𝑗
of the 𝑗-th particle, and 𝜙 is the Hessian matrix of the interaction potential. The

quasiperiodic substrate corrugation is modeled as a local potential

𝑉 (r) = −𝑉0

|︁|︁|︁|︁|︁|︁ 𝑁𝑠∑︁
𝑗=1

𝑒𝑖k 𝑗 ·r

𝑁𝑠

|︁|︁|︁|︁|︁|︁
2

= −𝑉0
𝑁2
𝑠

(︄∑︁
𝐺

𝑒−𝑖G·r + 𝑁𝑠

)︄
(4)

where 𝑉0 is the corrugation potential amplitude, 𝑎𝑝𝑜𝑡 is the characteristic length

scale of the potential and the integer 𝑁𝑠 denotes the 𝑁𝑠-fold symmetry of the

potential. k are the reciprocal vectors generating the potential:

k𝑚 =
2𝜋

𝑎𝑝𝑜𝑡

(︃
cos

2𝜋(𝑚 − 1)
𝑁𝑠

, sin
2𝜋(𝑚 − 1)

𝑁𝑠

)︃
(5)

and 𝐺 are the vectors connecting the 𝑁𝑠 (𝑁𝑠 − 1) pairs of k:

𝐺 = k𝑚 − k𝑛, 𝑚 ≠ 𝑛 (6)

Fig. 1 shows the set of 𝐺 vectors for a 5-fold symmetry. Their modules can be

calculated with some trigonometry:

|G1 | =
2𝜋

𝑎𝑝𝑜𝑡

√︄
2
√
5

1 +
√
5

and |G2 | =
2𝜋

𝑎𝑝𝑜𝑡

√︄
5 +

√
5

2
(7)
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Figure 1: (a)G vectors and their geometric construction from

the 5 k vectors of the 5-fold potential. (b) The complete set

of 20 G vectors.

For simplicity, we remove the constant additive term in Eq. 4 to obtain a

zero average potential:

𝑉 (r) = −𝑉0
𝑁2
𝑠

∑︁
𝐺

𝑒−𝑖G·r (8)

The global Hamiltonian is therefore

𝐻 = 𝐻0 +𝑈𝑒𝑥𝑡 = 𝐻0 +
∑︁
𝑗

𝑉 (rj) (9)

Following Novaco and McTague [5, 6], we apply the one-phonon approximation:

for small displacements, we can expand the exponential as 𝑒−𝑖G·u ≈ 1 − 𝑖G · u.
The first part of this work is dedicated to performing static optimizations, i.e. we

search for a configuration that minimizes the potential energy. In this context,

the Novaco-McTague theory predicts in the limit 𝑉0 → 0, using a variational

approach: ⎧⎪⎨⎪⎩ 𝜖1−𝑝ℎ = − 𝑉2
0

2𝑀𝑁4
𝑠

∑︁𝐵𝑍/𝑂
q

∑︁
𝑠=𝐿,𝑇

| 𝑓q,𝑠 |2
𝜔2
q,𝑠

𝑓q,𝑠 =
∑︁

G
∑︁
𝜏G · 𝜖q,𝑠𝑒−𝑖𝜏·R0𝛿q,G−𝜏

Here 𝑅0 is the origin of the lattice, 𝜏 are the crystal reciprocal lattice vectors,

𝜔q,𝑠 and 𝜖q,𝑠 are the phonon frequencies and phonon polarization vectors, while

𝑠 = 𝐿,𝑇 indicates the phonon branch (longitudinal or transverse).

Through the integer 𝑁𝑠, the Novaco-McTague theory can naturally be ap-

plied to both the crystalline case (𝑁𝑠 = 3) and the quasicrystalline case, selecting

𝑁𝑠 = 5 as done in this work. While the crystalline case has long been the object of

several studies, the quasicrystalline case has hardly been explored until recently.

In the crystalline case, it is known that there exists a privileged orientational

epitaxy between the colloidal lattice and the substrate potential. The existence

of a nonzero optimal misfit angle emerges from NM theory and has subsequently
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been verified experimentally [7, 8]. Studies conducted in recent years showed that

this result can be extended to the quasicrystalline case [9, 10, 11, 12].

Most recently, Ref. [13] has provided analytical predictions for the optimal

misfit angle which are shown to be in perfect agreement with numerical optimiza-

tion. In the first part of this work we reproduce the relaxation energetics of a

model hexagonal crystal over a quasiperiodic potential substrate at the optimal

misfit angle and verify that our results are in agreement with those of Ref. [13].

In the second part, we aim to investigate the tribological properties of the model

under the action of a constant external driving force, looking for evidence of an

Aubry-type transition from a superlubric to a pinned configuration.

2 The model

The model adopted in our work consists of a 2D colloidal monolayer interacting

with a decagonal quasi-periodic substrate in a viscous fluid. The use of colloids in

place of atoms has long introduced in this field of study in order for the particles

to be visible under a microscope, allowing direct experimental observations. This

model is described by the Hamiltonian:

𝐻𝑡𝑜𝑡 =
∑︁
𝑗

p2

2𝑀
+𝑈𝑐𝑐 +𝑈𝑒𝑥𝑡 +𝑈𝐹 (10)

Here 𝑈𝑐𝑐 indicates the intercolloidal potential, 𝑈𝑒𝑥𝑡 is the potential resulting

from the presence of the quasicrystalline substrate as described by the Novaco-

McTague theory presented in the previous section, and 𝑈𝐹 is the potential as-

sociated with the external driving force applied in dynamical simulations. The

intercolloidal potential adopted in this work is a simple harmonic potential:

𝑈𝑐𝑐 =
𝐾

2

∑︁
𝑖, 𝑗

( |r𝑖 − r 𝑗 | − 𝑎𝑐𝑜𝑙𝑙)2 (11)

where 𝐾 is the spring constant. Anharmonic potentials such as the Yukawa

potential or screened Coulomb potential would describe the interactions at play

more realistically and have been used in previous studies. However, the choice of

a harmonic interaction allows for better comparisons with the Novaco-McTague

theory.

The resulting equation of motion for the 𝑗-th colloidal particle is:

𝑚r̈ 𝑗 (𝑡) = −𝑚𝛾ṙ 𝑗 (𝑡) − ∇r𝑛 (𝑈𝑐𝑐 +𝑈𝑒𝑥𝑡) + 𝐹x̂ (12)

where −𝑚𝛾ṙ 𝑗 (𝑡) is a term associated with the damped motion of the particle

inside a viscous fluid and 𝐹 is the external driving force that, for definiteness,
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Parameter Value

𝑚 31.06 fkg

𝛾−1 5 · 103 µs
𝐾 0.2 zJµm−2

𝑎𝑝𝑜𝑡 5.4 µm
𝑎𝑐𝑜𝑙𝑙 5.8 µm
𝐾𝑎2

𝑐𝑜𝑙𝑙
6.728 zJ

Table 1: Parameters used in our model. The value 𝑎𝑝𝑜𝑡 will

be used as natural unit for the distance, while 𝐾𝑎2
𝑐𝑜𝑙𝑙

is used

as natural unit for energy, with 𝑔 =
𝑉0

𝐾𝑎2
𝑐𝑜𝑙𝑙

being the dimen-

sionless parameter used to express the corrugation potential

amplitude.

we apply in the direction of the 𝑥 axis, which is a high-symmetry axis of the

quasicrystalline potential. The temperature of the system is assumed to be zero.

We observe that due to the decagonal symmetry of the potential and to

the symmetries of the triangular lattice, the problem repeats periodically every

0◦−12◦ of mutual rotation. Furthermore, the angular inversion symmetry 𝜃 → −𝜃
in the potential can reduce the nontrivial range to 0◦ − 6◦.

Table 1 reports the parameters adopted in this model, from which we can

define the natural energy scale as 𝑘𝑎2
𝑐𝑜𝑙𝑙

= 6.728 zJ. The dimensionless parameter

describing the corrugation potential amplitude will then be 𝑔 =
𝑉0

𝑘𝑎2
𝑐𝑜𝑙𝑙

, in analogy

with the FK model parameter introduced in Eq. (2).

3 Implementation

In this section we present the technical implementation of the physical model

as described in Sect. 2. In order to perform relaxations and dynamical simu-

lations, we will use LAMMPS (Large-scale Atomic/Molecular Massively Parallel

Simulator), a classical Molecular Dynamics (MD) software [14].

Firstly, we generate a circular sample from a hexagonal lattice with spacing

𝑎𝑐𝑜𝑙𝑙 . The sample consists of 𝑁 colloids. The generated lattice sample will be

placed in the center of a 2D simulation supercell approximately 10 times larger

than the sample itself, large enough to accommodate the full time evolution in all

simulations we are running. We apply periodic boundary conditions at the edges

of the cell to prevent nonphysical bouncing of the particles on a box edge. Fig.

2 shows an example of a relatively small hexagonal lattice of 𝑁 = 3463 particles
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Figure 2: A visual rendering of a relatively small colloid lat-

tice sample as used in this work, made of 𝑁 = 3463 particles

rotated by 𝜃𝑁𝑀 ≃ 5.305◦. Blue particles (𝑁𝑒𝑥𝑡 = 204) are

considered the ’frame’ of the sample. In the initial relaxation

they are locked in their lattice positions, while the red ’inter-

nal’ particles (𝑁𝑖𝑛𝑡 = 3259) are free to move under the action

of the substrate potential and their reciprocal interactions. In

subsequent sliding simulations, the blue particles are treated

as a rigid body.

rotated at the Novaco angle.

3.1 Static relaxation

For each value of interest of 𝑔 = 𝑉0/𝑘𝑎2𝑐𝑜𝑙𝑙 , we need a static configuration that

minimizes the potential energy of the system before performing friction simu-

lations. All simulations in this work are performed with the sample lattice ro-

tated, with respect to the substrate potential, by the Novaco-McTague angle i.e.

the angle that minimizes the potential energy. For the adopted configuration of

𝑎𝑝𝑜𝑡 = 5.4 µm, 𝑎𝑐𝑜𝑙𝑙 = 5.8 µm, the optimal misfit angle is 𝜃𝑁𝑀 ≃ 5.305◦ [13].

A first necessary step for setting up the simulation runs consists in estab-

lishing the appropriate MD integration time step 𝛿𝑡. Ideally, the appropriate

time step is large enough to respect total energy conservation over a time interval

compatible with that required by our simulations, while also being small enough

to not cause the computation time to increase unnecessarily. This is achieved

by performing MD simulations in which the particles are only subject to the

potential 𝑈 = 𝑈𝑐𝑐 + 𝑈𝑒𝑥𝑡 , not to any external constant driving force nor to any
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Figure 3: A verification of the conservation of the total en-

ergy over conservative simulations, for a sample lattice of

𝑁 = 9407, all started off at the same initial condition.. The

corrugation potential amplitude is 𝑔 = 0.1. Note the signifi-

cant jump in the total energy at the first time step, a charac-

teristic defect of the Velocity Verlet algorithm when started

off with all null velocities. Smaller time steps produce better

energy conservation.

nonconservative damping. Fig. 3 shows the supposedly conserved total energy

𝐸𝑡𝑜𝑡 as function of the simulation time, for a few selected time step 𝛿𝑡. As we

can observe, the value 𝛿𝑡 = 50 µs keeps the total energy quite constant over the

relatively long simulated time, and is therefore the chosen integration time step

for our MD simulations. Note that atomic MD simulations usually require far

smaller time steps, typically in the order of one fs, and this makes the 50 micro

s time step appropriate. However, we are dealing with colloids which are far

heavier and therefore slower.

For relaxation, a number of numerical methods can be implemented. The

next two subsections summarize the methods adopted in this work and their

implementation.

3.2 FIRE minimization

In the weak-coupling region, where 𝑔 ≪ 1, we expect displacements of the atoms

proportional to 𝑉0 and a lowering in the the total energy of the system propor-

tional to 𝑉2
0 (Eq. 1.2). This weak-coupling perturbative regime is compatible
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with a single global minimum at a configuration very close to the perfect crystal.

FIRE, short for Fast Inertial Relaxation Engine, is a computational relax-

ation method used to quickly find the nearest local minimum from the starting

configuration, as described in detail in Ref. [15]. It is based on the discrete

version of the following equation:

v̇(𝑡) = F

𝑚
− 𝛾(𝑡) |v̇(𝑡) |

(︃
v(𝑡)
|v(𝑡) | −

F(𝑡)
|F(𝑡) |

)︃
(13)

where 𝑚 and v are the mass and the velocity of a particle, and F = −∇𝑈 (x) is

the force acting on it obtained from the potential 𝑈 = 𝑈𝑐𝑐 +𝑈𝑒𝑥𝑡 . The last term

of Eq. (13) is an addition to the standard equation of damped motion whose

purpose is to introduce an acceleration in a direction which is steeper than the

current direction of motion, via 𝛾(𝑡), when the power 𝑃(𝑡) = F(𝑡) ·v(𝑡) is positive.
To avoid uphill motion, the velocity is set to zero if the power becomes negative.

Furthermore, the velocity is also modified with:

v = (1 − 𝛼)v + 𝛼v F

|F| (14)

using the parameter 𝛼 = 𝛾𝛿𝑡, with 𝛿𝑡 being the integration time step. For our

minimization runs, we use LAMMPS’ default values for the most of the param-

eters involved. The only parameter worth tuning is the integration time step

𝛿𝑡. According to Ref. [15], for atomic-scale molecular dynamics an estimate of

correct time step is 𝛿𝑡 = 10𝛿𝑡𝑀𝐷 , where 𝛿𝑡𝑀𝐷 is the integration time step used

with regular MD simulations. Following this rule, we use 𝛿𝑡 = 500 µs. Larger

time steps would result in fluctuations around the energy minimum, failing to

settle in the minimum in a satisfactory way - that is, reaching the energy or force

thresholds required for the algorithm to stop.

The FIRE algorithm needs to be given a stopping condition either on the

force acting upon the system or the energy lowering. After testing a few different

conditions, we decide to set a threshold on the force only, requiring its value to

reach that of 10−4𝑉0/𝑎𝑐𝑜𝑙𝑙 for the minimization run to stop.

3.3 Simulated Annealing

As the corrugation potential amplitude is increased, the potential becomes more

and more rugged, as sketched in Fig. 4, presenting several local minima instead

of a singular global minimum. Applying FIRE to this situation would only find

the closest local minimum, while the global minimum could sit far away from the

the current basin of attraction.
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Figure 4: A 1D sketch of the total potential as a function of

an arbitrary displacement coordinate. When the corrugation

contribution remains within the perturbative range one global

minimum is observed. As the corrugation amplitude is fur-

ther increased, the potential becomes more and more rugged,

presenting several local minima.

Simulated Annealing is a probabilistic computational method used to find

a global minimum in the presence of several local minima. Its name comes from

annealing, a technique used in metallurgy that involves heating and subsequently

”slowly” cooling a material in order to alter its physical properties. The system

is initially brought to an initial temperature 𝑇0. This temperature should be high

enough to let the system explore configurations that sit outside the basin of at-

traction of a local minimum of the potential energy. For this reason a reasonable

choice of initial temperature for our model involves a value of 𝑘𝐵𝑇0 compara-

ble with the largest potential barrier. However, a value too high may lead to

completely disordered configurations of the lattice sample. The choice of 𝑇0 is

therefore to be made with caution. As the maximum potential barrier in the

model is determined by the value of 𝑉0, we start each annealing process from a

temperature 𝑇0 such that 𝑘𝐵𝑇0 = 0.1𝑉0.

After bringing the system to the designed initial temperature, the system is

cooled down following an annealing schedule. An annealing schedule establishes

how the temperature is brought down in steps to 𝑇 = 0. Several different options

can be adopted as to how the temperature is decreased, most notably:

• linearly;

11



Figure 5: The adopted Simulated Annealing schedule.

• ”geometrically”, i.e. multiplying 𝑇 by a factor 0 < 𝛼 < 1, close to 1, at each

step;

and with various other more elaborate or composite algorithms.

Simulated Annealing does not ensure that the global minimum is found over

a finite simulation time. However, by choosing an effective annealing schedule and

allowing the system enough time to be slowly cooled down, we can identify the

resulting minimum as the global minimum with a good degree of confidence. For

this work we chose to cool the system using series of linear ramps with different

slopes, using LAMMPS Langevin thermostat. The adopted annealing schedule is

depicted in Fig. 5. Equilibration times 𝑡1, 𝑡2, 𝑡3 can be tuned as needed, however

values 𝑡1 = 2.5 s, 𝑡2 = 7.5 s, 𝑡3 = 12.5 s were able to yield satisfactory results.

Performing longer simulations or adding more linear ramps was not found to be

helpful in locating final configurations characterized by a lower potential energy.

At the end of the annealing, a FIRE minimization is performed to ensure that

the precise minimum is reached.

In order to avoid global deformations of the sample during simulations, we

decide to lock the external colloids of the sample in their lattice positions as a

rigid frame, following previous studies [12]. In practice, in static minimizations

the external particles are not allowed to move from their initial positions, by

setting the total force acting on them as zero. In friction simulations, the outer

ring particles are kept as a rigid body, allowed to translate freely under the action

of the resulting total force.
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Figure 6: (a) Pinned state observed for 𝑔 = 0.07, 𝐹 = 0.01.

(b) Unpinned state observed for 𝑔 = 0.07, 𝐹 = 0.05. In panel

(a) we can observe clearly the presence of a transient before

reaching the pinned steady state.

3.4 Friction protocol

To study the frictional properties of the system, we start from perfect lattice

configurations rotated by the optimal twist angle 𝜃𝑁𝑀 ≃ 5.305◦ and subsequently

fully relaxed simulation. We then apply a constant dragging force 𝐹 to the colloid

directed along the 𝑥-axis.

Different values of 𝑔 involve different scales for the forces and the resulting

velocities involved in the study of the dynamical properties of the system. For

each 𝑔 we define the force 𝐹1𝑠, which is the minimum force needed by a single

colloid to exit the potential well at the origin. The value of 𝐹1𝑠 is given by:

𝐹1𝑠 = 𝑧
𝑉0

𝑎𝑝𝑜𝑡
(15)

where 𝑧 = 4.279396 ± 0.000001. This is obtained by numerically computing the

second derivative of the external potential 𝑉 (r) evaluated at the first inflection

point [9]. It will therefore be natural as well as convenient to express forces in

units of 𝐹1𝑠.

For every force applied, we aim to distinguish between a pinned state and an

unpinned state. A pinned configuration is such that, after a transient, the center

of mass velocity of the sample vanishes, see Fig. 6a. An unpinned configuration

is such that the center of mass velocity of the sample fluctuates around a constant

finite average value (Fig. 6b), resulting in approximately uniform linear motion

of the sample.

We start by applying a range of forces separated by relatively large intervals,

e.g. 0.1𝐹1𝑠. This allows us to roughly identify an interval of forces in which a
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depinning transition may take place. For relatively large values of 𝑔, 𝑔 ≥ 0.05 or

greater, we expect to find a transition between a pinned state and an unpinned one

already between two of these forces. For smaller 𝑔, however, 𝐹 = 0.1𝐹1𝑠 is a force

too great to observe pinned states. Once the interval in which the transition takes

place has been determined, we proceed by probing more accurately the values

within that interval, e.g. by increasing the force by 0.01𝐹1𝑠. We also similarly

probe the interval immediately greater than the one containing the transition.

This will be useful when trying to estimate the value of the static friction force

𝐹𝑠, as later described in detail in Sect. 4. In the case of large enough corrugation

potential amplitudes this procedure may allow us to observe a pinned state at

weak forces and therefore identify an interval for the transition, but not in all

cases. With especially small 𝑔, a pinned state will not be observed: we may be

in the presence of a superlubric configuration, that is one in which every force

applied to the system, however weak, will cause the sample to slide in a linear

motion. Ruling out the presence of a pinned state at lower forces than those

studied is not achievable computationally: for any force that yields a running

state, we cannot rule out that applying an even smaller force will result in a

pinned state. Studying the frictional properties of the system therefore becomes

increasingly difficult as the forces at play get smaller, since longer and longer

simulation times are required for the sample to travel significant distances (i.e. at

least a few times the potential characteristic length 𝑎𝑝𝑜𝑡 = 5.4 µs). In these cases

we can only estabilish an upper boundary for the depinning force. Furthermore,

as highlighted by Ref. [13] (and shown in Fig. 7), boundary effects are responsible

for oscillations of the relaxed potential energy as the sample travels along the 𝑥

axis. These oscillations act as potential barriers, thus ensuring that, for a small

enough force, a pinned state will always be observed as long as the size is finite. To

address this issue, the depinning transition should be investigated as a function

of the sample size. Due to time constraint we were not able to carry out this task

in full.

3.5 Steady states

To properly compute the frictional steady-state properties of the system, we must

first of all identify a steady state, namely a state in which the velocity of the

center of mass of the system does not change significantly over time, but rather

fluctuates quickly around a constant mean value. For all cases of study, the

system first undergoes a transient phase. The Langevin thermostat generating a

damped dynamic keeps the temperature of the system close to 𝑇 = 0. Its damping

time constant, 𝛾−1, indicates the approximate time that it takes for the system
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Figure 7: Effect of the translation R0 of the sample lattice

center across the substrate potential for different sample sizes.

With increasing size, the observed oscillations decrease in am-

plitude, suggesting that they would vanish in the infinite-

size limit. Simulations carried out with values 𝑎𝑝𝑜𝑡 = 5.4 𝜇𝑠,

𝜃 = 𝜃𝑁𝑀 , 𝑔 = 0.0001 [13]. The direction ⊥ q𝑚𝑖𝑛 are oblique

directions at the Novaco angle.

to approach thermal equilibrium. In many situations, especially with forces far

from depinning, a steady state is reached quickly, i.e. in times comparable to

𝛾−1. In many other cases, however, the system takes significantly longer times to

reach a steady state, due to complex internal phenomena: during this transient

phase the sample could incur in local depinning, while most of the sample remains

locked, or full re-organization of the lattice particles, before eventually reaching

a completely still configuration, or instead generate an avalanche-like depinning

motion. For these reasons identifying a steady state can be a tricky task, more so

because the total time duration of these transient phases can reach time intervals

approaching 50 s, extending the computational time required for these simulations

substantially.

Starting from a small force, we will run the simulation until a steady state

is reached and long enough so that the sample center of mass is allowed to travel

a distance greater than a few times 𝑎𝑝𝑜𝑡 . Starting from the resulting final state,

we then increase the force by a small step and again reach and maintain a steady

state. All transients are then discarded from the computation of the average

center-mass velocity.
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4 Results

4.1 Static properties

Firstly, we verify how our simulated regimes compare with the NM theory. In

particular we compare our relaxed energies with the the results obtained by Ref.

[13] regarding the deviation from analytical one-phonon prediction, Eq. (1.2), for

increasing 𝑔. We study the relation between the relaxed energy at the optimal

twist angle (NM angle) 𝜃𝑁𝑀 for our choice of 𝑎𝑝𝑜𝑡/𝑎𝑐𝑜𝑙𝑙 and at different 𝑔 =

𝑉0/𝑘𝑎2𝑐𝑜𝑙𝑙 .
For each value of interest of 𝑔 ranging from 0.0001 to 1.0, we rotate the

perfect lattice sample by the angle 𝜃𝑁𝑀 ≃ 5.305, perform complete optimization

of the system and compute the energy lowering per internal particle Δ𝑈/𝑁𝑖𝑛𝑡 .
Since the corrugation potential as defined in Eq. (8) is zero-average, we expect

the potential energy per particle of an infinite hexagonal lattice sample to vanish.

This is due to the incommensurability between the two geometries (hexagonal and

decagonal), which results in every lattice particle being a random sampling of the

zero-average potential. In the finite size case, the energy exhibits fluctuations

around zero as function of the twist angle. The amplitude of these fluctuations is

shown to decrease for increasing size faster than 𝑁−1/2
𝑡𝑜𝑡 [13]. In order to counteract

the effects of the sample edge, as was done in Ref. [13], we report the energy

lowering Δ𝑈 = 𝑈𝑟𝑒𝑙𝑎𝑥𝑒𝑑 −𝑈𝑖𝑛𝑖𝑡𝑖𝑎𝑙 instead of the absolute energy.

The results, shown in Fig. 8, are consistent with those of Ref .[13]. At low

potential corrugation amplitudes, 𝑔 ≤ 0.001, where the weak-coupling approxima-

tion of the Novaco-McTague theory is valid, we observe that the energy lowering

per particle is nearly constant, close to the value predicted by NM theory at the

optimal misfit angle, whereas for greater values of 𝑔 it deviates significantly.

Fig. 8 also allows us to compare the results obtained by a full relaxation run

(Simulated Annealing to target the global potential energy minimum, plus FIRE

to reach the bottom of the potential well) with those obtained by merely reaching

the nearest local minimum with a single FIRE run. In the weak-coupling region

the energy is proportional to 𝑉2
0 as predicted by the NM theory (Eq. 1.2): in

this region both methods are equally effective, as expected, at finding the global

minimum. But as the corrugation amplitude is increased the rugged aspect of the

potential makes Simulated Annealing essential for identifying the global energy

minimum.
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Figure 8: Relaxation energy per internal particle depen-

dence on the corrugation amplitude for a circular sample of

𝑁𝑡𝑜𝑡 = 81619 particles. The energy per particle is computed

accounting for the 𝑁𝑖𝑛𝑡 = 80527 internal particles only. Re-

sults are compared between FIRE and complete Simulated

Annealing optimization, as described in Sect. 3. For values

up to 𝑔 = 0.3, the two methods yield identical results. For

larger 𝑔, Simulated Annealing is able to reach a deeper, pos-

sibly global, minimum.

4.2 Frictional properties

In order to study the frictional properties of the system, we apply a constant

driving force 𝐹 along the 𝑥 axis to a lattice sample that has undergone a mini-

mization run at the optimal twist angle 𝜃𝑁𝑀 . As outlined in Sect. 3, measuring

the steady-state velocity of a configuration requires reaching a steady state after

going through a transient phase. Such transient phases can present varied aspects

and can protract for long time intervals, making the identification of steady states

a non trivial task. Fig. 9, shows a transient in the center-of-mass velocity of the

sample encountered in our simulations.

Once a steady state has been reached, we measure the average velocity of

the sample over a distance spanning at least a few times 𝑎𝑝𝑜𝑡 . The best possible
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Figure 9: Center of mass displacement along the 𝑥 axis (left)

and center-of-mass velocity (right) as a function of the simula-

tion time, for a lattice sample of 𝑁 = 9407 particles, obtained

imposing a normalized driving force 𝐹 = 0.04 𝐹1𝑠 over a sub-

strate potential characterized by 𝑔 = 0.08.

estimate is simply:

⟨𝑣𝑥,𝑐𝑚⟩ =
Δ𝑥𝑐𝑚

Δ𝑡
(16)

where Δ𝑥𝑐𝑚 is the distance traveled along the 𝑥 axis by the center of mass over a

time Δ𝑡. An estimate of statistical uncertainty is provided by a standard deviation

on the velocity of the particle in the steady state.

We then define the average mobility along the 𝑥 axis as:

𝜇𝑥 =
⟨𝑣𝑥,𝑐𝑚⟩
𝐹

(17)

where 𝐹 is the dragging force applied to the sample. In the simplest ideal case of

a single free-sliding colloidal particle, the steady-state velocity is proportional to

the driving force:

𝑣𝑠 =
𝐹

𝑚𝛾
(18)

where 𝛾 is the damping rate. From this follows that the mobility of a single

free-sliding particle is:

𝜇 𝑓 𝑟𝑒𝑒 =
1

𝑚𝛾
(19)

which is fixed by the simulation parameters. We call this quantity the free-sliding

mobility.

We proceed to compute the steady-state mobility as function of the applied

force. Fig. 10 shows the mobility along the 𝑥 axis for a number of different

𝑔 values. For higher 𝑔, we can observe clearly the presence of a transition from
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Figure 10: Normalized mobility 𝜇𝑥/𝜇 𝑓 𝑟𝑒𝑒 along the 𝑥 axis

as function of the driving force 𝐹/𝐹1𝑠 for different values of

corrugation potential amplitude 𝑔, for a lattice sample of 𝑁 =

9407 particles. A depinning transition is clearly visible in

some of the observed configurations.

pinned states, where the mobility is close to zero, to unpinned states with nonzero

mobility. Low values of 𝑔, namely those lower than 𝑔 = 0.05, do not show

evidence of pinned states in the range of forces measured. This absence of a

static friction threshold could be indicative of a superlubric configuration even

though, as outlined in Sect. 3, we cannot completely rule out the presence of

pinned states at even weaker forces than those probed.

Additionally, we compute the steady-state velocity along the 𝑦 axis in a

similar fashion. We can thus measure the angle between the velocity and the

applied force as:

𝜃 = arctan

(︃ ⟨𝑣𝑦,𝑐𝑚⟩
⟨𝑣𝑥,𝑐𝑚⟩

)︃
. (20)

By reporting the angle of steady-state motion as a function of the applied force

we can check for evidence of directional-locking, that is a condition in which for

a range of applied force 𝐹 the sample slides at a fixed angle 𝜃 to the force. As

shown in Fig. 11, for 𝑔 = 0.07 we observe directional locking at low values of 𝐹

at an angle 𝜃 ≈ 28◦.
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Figure 11: Angle 𝜃 between the velocity and the applied force

as function of 𝐹/𝐹1𝑠. The sample size is 𝑁𝑡𝑜𝑡 = 9407.

4.3 Depinning transition

To address the Aubry-type transition in the present model, for each value of 𝑔

investigated we report a range of confidence for the static friction threshold. In or-

der to achieve that, we take the largest force which leads to a clearly pinned steady

state as a lower limit, and the weakest force which leads to a clearly unpinned

configuration as an upper limit. When we fail to detect any statically pinned

state, the lower limit is set to zero. Furthermore, in this window we estimate the

static friction force 𝐹𝑠 from the data. In-depth studies of a 1D crystal-on-crystal

model have shown that in non-superlubric configurations 𝜇 approaches the pin-

ning transition (with forces approaching the static friction threshold from above)

with the shape of a power law with exponent 1/2 < 𝛼 < 1 [2]. We attempt to

identify the same power law for the crystal-on-quasicrystal case, Fig. 10. We

then fit our mobility data with the following function:

𝜇

𝜇 𝑓 𝑟𝑒𝑒
= 𝐵

(︃
𝐹 − 𝐹𝑠
𝐹1𝑠

)︃𝛼
. (21)

The fitting parameters are 𝐵 > 0, 𝐹𝑠 ≥ 0 and 0 < 𝛼 < 1. This method provides a

reliable estimate for 𝐹𝑠. We thus perform a fit with the function above using the

measured mobility for a range of forces that extends from the first unpinned state

to a force 0.1 𝐹1𝑠 greater. Using values beyond this range would be inappropriate,

since the shape of the curve deviates from the power law, as shown in Fig. 12.

The resulting confidence ranges and estimated static friction thresholds are

reported in Fig. 13 as functions of 𝑔. Fig. 13 places the Aubry transition in the
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Figure 12: Power function fit performed on mobility data for

unpinned states with force up to 0.3 𝐹1𝑠. The resulting fit

parameters are 𝐹𝑠 = 0.1352𝐹1𝑠, 𝐵 = 1.2260, 𝛼 = 0.5557. The

data matches the fit results for the adopted range of forces,

but significantly deviates outside of that range.

window 0.01 < 𝑔 < 0.04 where we can estimate that 𝐹𝑠 vanishes.

Assessing the presence of superlubricity and the precise position and nature

of the Aubry transition is a difficult task that goes beyond the computational

resources available for this work. It would certainly require re-examining the

problem with larger sample sizes and make a serious size scaling of the depinning

thresholds.

5 Discussion and Conclusion

In this work we study the properties of an elastically deformable hexagonal lattice

over a quasiperiodic potential in a mismatched configuration at the optimal misfit

angle. We use a circular lattice colloid sample with harmonic colloid-colloid

interactions. Via FIRE relaxation and Simulated Annealing, we construct a fully

relaxed optimal starting point for successive friction simulations. verify that the

results are in agreement with NM theory predictions. Simulated Annealing leads

to better results than FIRE for values 𝑔 =
𝑉0

𝑘𝑎2
𝑐𝑜𝑙𝑙

> 0.05. larger sizes of the

sample and at smaller forces, we predict that evidence of a superlubric phase

may be observed. By mapping the static friction threshold as a function of the

corrugation amplitude, we find evidence of an Aubry transition from a superlubric

state at low corrugation to a statically pinned state in the vicinity of 𝑔 = 0.05.

We also find preliminary evidence of directional locking in the sliding near and
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Figure 13: Confidence ranges for the depinning transition and

estimated static friction threshold, Red data points are mea-

sured using a lattice sample of 𝑁 = 9407 particles. Black

data points have been obtained using a sample of 𝑁 = 81619

particles. The Aubry-type transition is estimated in the

0.01 < 𝑔 < 0.04 range.

above the Aubry transition.

The preliminary results obtained in this work would require a systematic

size scaling to verify the presence and nature of the Aubry transition in this

unconventional 2D model. Also, it would be interesting to examine the possible

anisotropies of friction as a function of the driving direction.
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[2] L. M. Floŕıa and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova

model, Adv. in Phys., 45(6):505–598 (1996).

[3] S. Aubry and P.Y. Le Daeron, The discrete Frenkel-Kontorova model and

its extensions: I. Exact results for the ground-states, Phys. D, 8(3):381–422

(1983).

[4] M. Peyrard and S. Aubry, Critical behaviour at the transition by breaking of

analyticity in the discrete Frenkel-Kontorova model, J. Phys. C, 16(9):1593

(1983).

[5] A. D. Novaco and J. P. McTague, Orientational epitaxy—the orientational or-

dering of incommensurate structures, Phys. Rev. Lett., 38:1286–1289 (1977).

[6] J. P. McTague and A. D. Novaco, Substrate-induced strain and orientational

ordering in adsorbed monolayers, Phys. Rev. B, 19:5299–5306 (1979).

[7] C. G. Shaw, S. C. Fain, and M. D. Chinn, Observation of Orientational Or-

dering of Incommensurate Argon Monolayers on Graphite, Phys. Rev. Lett.

41, 955 (1978).

[8] T. Brazda, A. Silva, N. Manini, A. Vanossi, R. Guerra, E. Tosatti, and

C. Bechinger, Experimental Observation of the Aubry Transition in Two-

Dimensional Colloidal Monolayers, Phys. Rev. X 8, 011050 (2018).

[9] D. Bertazioli, Structure, Energetics, and Dynamic Properties of a Colloidal

Monolayer on a Quasiperiodic Potential Substrate, University of Milan, 2018,

http://materia.fisica.unimi.it/manini/theses/bertazioli.pdf.

[10] T. Salvalaggio, Angular analysis of a model colloidal monolayer on a qua-

sicrystalline substrate, University Milan, 2019, http://materia.fisica.

unimi.it/manini/theses/salvalaggio.pdf.

[11] M. Forzanini, Accurate relaxation of a 2D crystal interacting with a qua-

sicrystalline potential, University Milan, 2023, http://materia.fisica.

unimi.it/manini/theses/forzanini.pdf

[12] S. Pagano, Angular Energetics and Friction of a Harmonic Hexagonal

Monolayer over a Quasicrystalline Substrate, University Milan, 2022, http:

//materia.fisica.unimi.it/manini/theses/paganoMag.pdf

23

http://materia.fisica.unimi.it/manini/theses/bertazioli.pdf
http://materia.fisica. unimi.it/manini/theses/salvalaggio.pdf
http://materia.fisica. unimi.it/manini/theses/salvalaggio.pdf
http://materia.fisica.unimi.it/manini/theses/forzanini.pdf
http://materia.fisica.unimi.it/manini/theses/forzanini.pdf
http://materia.fisica.unimi.it/manini/theses/paganoMag.pdf
http://materia.fisica.unimi.it/manini/theses/paganoMag.pdf


[13] N. Manini, M. Forzanini, S. Pagano, M. Bellagente, M. Colombo, D. Bertazi-

oli, T. Salvalaggio, A. Vanossi, D. Vanossi, E. Panizon, E. Tosatti and G. E.

Santoro, Striped twisted state in the orientational epitaxy on quasicrystals,

Phys. Rev. Lett. 134, 066202 (2025).

[14] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.

Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D.

Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton,

LAMMPS - a flexible simulation tool for particle-based materials modeling

at the atomic, meso, and continuum scales, Comp Phys Comm, 271, 10817

(2022).

[15] E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and Peter Gumbsch, Struc-

tural Relaxation Made Simple, Phys. Rev. Lett. 97, 170201 (2006)

24


	Introduction
	The Frenkel-Kontorova model
	The Novaco-McTague theory

	The model
	Implementation
	Static relaxation
	FIRE minimization
	Simulated Annealing
	Friction protocol
	Steady states

	Results
	Static properties
	Frictional properties
	Depinning transition

	Discussion and Conclusion

