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Abstract

We study a model consisting of a crystalline monolayer with hexag-
onal symmetry in contact with a decagonal quasicrystalline potential, at
the optimal angular orientation according to the extension of the Novaco-
McTague theory to the case of a quasicrystalline potential. Through FIRE
minimization and Simulated Annealing, we obtain a well-relaxed config-
uration of the monolayer, which is used as the starting configuration for
the friction analysis. The frictional properties of the monolayer are then
studied using molecular dynamics simulations, exploring the Aubry-type
transition between a superlubric state and one characterized by a finite
static friction force.
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1 Introduction

1.1 The Frenkel-Kontorova model

The frictional properties at the contact of two periodic interfaces have long at-
tracted interest in research, and various models have been developed for the study
of these systems. The Frenkel-Kontorova (FK) model is the simplest model used
to described a 1D chain of interacting particles on a periodic potential substrate
[T, 2]. The simplest formulation of FK model consists in a chain of particles in
a sinusoidal potential, interacting harmonically with their first neighbours. The
Hamiltonian for this model is:
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where a.,y is the rest distance of the harmonic interaction and a ,,, is the potential
Apor.
Acoll
of particles and the potential wells. The case p = 1 describes a lattice-matched

spacing. From here we can define a mismatch ratio p = between the number
system, with one particle in each well.

A kink or soliton is the topological excitation caused by an addition of a
particle to this chain. The presence of an additional particle would result in
two particles being placed inside the same potential well. Once the particle is
added to the chain, it pushes out of their wells few surrounding particles and the
equilibrium configuration is characterized by a local compression of the chain - a
kink; on the other hand, the subtraction of a particle leaves a well empty and the
equilibrium configuration is characterized by a local expansion of the chain, called
antikink. Kinks and antikinks push particles out of the minima of the substrate
potential, allowing them to move easily in response to an external driving force.
As the FK model can be solved exactly in the continuum approximation, it has
been long adopted as the standard model in describing soliton excitation.

A particular case of interest is given by that in which the ratio p is an
irrational number, known as an incommensurate case. In the incommensurate
case, the FK model shows an interesting transition as a function of the potential
height V. Below a well defined value of V{ the chain can slide freely over the
substrate under the action of an arbitrarily small driving force, i.e. the static
friction Fy vanishes. This condition is called superlubricity. In contrast, above
the critical value, the system shows a finite Fy which must be overcome to start
sliding. This transition, defined as transition by breaking of analyticity, was
studied in great detail by Serge Aubry [3, 4], and it is therefore widely known as



the Aubry transition. The parameter

" ka?

coll

g (2)
represents the relative amplitude of the corrugation potential respect to the natu-
ral energy unit of the colloid lattice. If g > 1, more particles are located near the
bottom of potential wells, therefore requiring a very large force to force them out
of the potential barrier and move the chain globally. On the contrary, if g < 1,
particles composing the chain can be easily dragged by weaker forces, producing
a sliding motion.

1.2 The Novaco-McTague theory

We consider a 2D harmonic crystalline monolayer, having the following Hamilto-
nian

2
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where u; = r; — R; is the displacement from the equilibrium lattice positions r;
of the j-th particle, and ¢ is the Hessian matrix of the interaction potential. The
quasiperiodic substrate corrugation is modeled as a local potential
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where V) is the corrugation potential amplitude, ap,, is the characteristic length
scale of the potential and the integer Ny denotes the Ng-fold symmetry of the
potential. k are the reciprocal vectors generating the potential:
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and G are the vectors connecting the Ny(N; — 1) pairs of k:
G=k,-k,, m#n (6)

Fig. |1| shows the set of G vectors for a 5-fold symmetry. Their modules can be
calculated with some trigonometry:
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Figure 1: (a) G vectors and their geometric construction from
the 5 k vectors of the 5-fold potential. (b) The complete set
of 20 G vectors.

For simplicity, we remove the constant additive term in Eq. [ to obtain a
zero average potential:

V(r) = ——5 » e 6T (8)
The global Hamiltonian is therefore

H = Ho+Uey = Ho + ) V() 9)
j

Following Novaco and McTague [3] [6], we apply the one-phonon approximation:
for small displacements, we can expand the exponential as e 6% ~ 1 — G - u.
The first part of this work is dedicated to performing static optimizations, i.e. we
search for a configuration that minimizes the potential energy. In this context,
the Novaco-McTague theory predicts in the limit Vy — 0, using a variational
approach:
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Here Ry is the origin of the lattice, T are the crystal reciprocal lattice vectors,
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wq,s and €q; are the phonon frequencies and phonon polarization vectors, while
s = L, T indicates the phonon branch (longitudinal or transverse).

Through the integer Ng, the Novaco-McTague theory can naturally be ap-
plied to both the crystalline case (N; = 3) and the quasicrystalline case, selecting
Ny =5 as done in this work. While the crystalline case has long been the object of
several studies, the quasicrystalline case has hardly been explored until recently.

In the crystalline case, it is known that there exists a privileged orientational
epitaxy between the colloidal lattice and the substrate potential. The existence
of a nonzero optimal misfit angle emerges from NM theory and has subsequently



been verified experimentally [7,8]. Studies conducted in recent years showed that
this result can be extended to the quasicrystalline case [9, [10} 1], 12].

Most recently, Ref. [13] has provided analytical predictions for the optimal
misfit angle which are shown to be in perfect agreement with numerical optimiza-
tion. In the first part of this work we reproduce the relaxation energetics of a
model hexagonal crystal over a quasiperiodic potential substrate at the optimal
misfit angle and verify that our results are in agreement with those of Ref. [13].
In the second part, we aim to investigate the tribological properties of the model
under the action of a constant external driving force, looking for evidence of an
Aubry-type transition from a superlubric to a pinned configuration.

2 The model

The model adopted in our work consists of a 2D colloidal monolayer interacting
with a decagonal quasi-periodic substrate in a viscous fluid. The use of colloids in
place of atoms has long introduced in this field of study in order for the particles
to be visible under a microscope, allowing direct experimental observations. This
model is described by the Hamiltonian:

2
p
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Here U,. indicates the intercolloidal potential, U,y; is the potential resulting
from the presence of the quasicrystalline substrate as described by the Novaco-
McTague theory presented in the previous section, and Uf is the potential as-
sociated with the external driving force applied in dynamical simulations. The
intercolloidal potential adopted in this work is a simple harmonic potential:

K 2
U = 5 ZZJ:(lrl _rjl - acoll) (11)

where K is the spring constant. Anharmonic potentials such as the Yukawa
potential or screened Coulomb potential would describe the interactions at play
more realistically and have been used in previous studies. However, the choice of
a harmonic interaction allows for better comparisons with the Novaco-McTague
theory.

The resulting equation of motion for the j-th colloidal particle is:
mi;j (1) = =myt;(1) = Vi, (Uce + Uen) + FX (12)

where —my¥;(t) is a term associated with the damped motion of the particle
inside a viscous fluid and F is the external driving force that, for definiteness,



Parameter | Value

m 31.06 ftkg
y! 5-103% ps
K 0.2 zJpm ™2
Apot 5.4 nm
Acoll 5.8 pm
Ka? 6.728 zJ

Table 1: Parameters used in our model. The value a,,; will

be used as natural unit for the distance, while K a?oll is used
Vo

as natural unit for energy, with g = being the dimen-

coll

sionless parameter used to express the corrugation potential
amplitude.

we apply in the direction of the X axis, which is a high-symmetry axis of the
quasicrystalline potential. The temperature of the system is assumed to be zero.

We observe that due to the decagonal symmetry of the potential and to
the symmetries of the triangular lattice, the problem repeats periodically every
0°—12° of mutual rotation. Furthermore, the angular inversion symmetry § — —6
in the potential can reduce the nontrivial range to 0° — 6°.

Table [1| reports the parameters adopted in this model, from which we can
define the natural energy scale as kago ;= 6.728zJ. The dimensionless parameter

describing the corrugation potential amplitude will then be g = kaV; , in analogy
with the FK model parameter introduced in Eq. (2)).

coll

3 Implementation

In this section we present the technical implementation of the physical model
as described in Sect. 2. In order to perform relaxations and dynamical simu-
lations, we will use LAMMPS (Large-scale Atomic/Molecular Massively Parallel
Simulator), a classical Molecular Dynamics (MD) software [14].

Firstly, we generate a circular sample from a hexagonal lattice with spacing
aco11- The sample consists of N colloids. The generated lattice sample will be
placed in the center of a 2D simulation supercell approximately 10 times larger
than the sample itself, large enough to accommodate the full time evolution in all
simulations we are running. We apply periodic boundary conditions at the edges
of the cell to prevent nonphysical bouncing of the particles on a box edge. Fig.
shows an example of a relatively small hexagonal lattice of N = 3463 particles



Figure 2: A visual rendering of a relatively small colloid lat-
tice sample as used in this work, made of N = 3463 particles
rotated by Oyy =~ 5.305°. Blue particles (Ngy, = 204) are
considered the frame’ of the sample. In the initial relaxation
they are locked in their lattice positions, while the red ’inter-
nal’ particles (N, = 3259) are free to move under the action
of the substrate potential and their reciprocal interactions. In
subsequent sliding simulations, the blue particles are treated
as a rigid body.

rotated at the Novaco angle.

3.1 Static relaxation

For each value of interest of g = Vp/ kaz we need a static configuration that

minimizes the potential energy of the s;lsltem before performing friction simu-
lations. All simulations in this work are performed with the sample lattice ro-
tated, with respect to the substrate potential, by the Novaco-McTague angle i.e.
the angle that minimizes the potential energy. For the adopted configuration of
Apor = 5.41m, acoy = 5.8 pm, the optimal misfit angle is Oy =~ 5.305° [13].

A first necessary step for setting up the simulation runs consists in estab-
lishing the appropriate MD integration time step o¢. Ideally, the appropriate
time step is large enough to respect total energy conservation over a time interval
compatible with that required by our simulations, while also being small enough
to not cause the computation time to increase unnecessarily. This is achieved
by performing MD simulations in which the particles are only subject to the
potential U = U, + U,ys, not to any external constant driving force nor to any
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Figure 3: A verification of the conservation of the total en-
ergy over conservative simulations, for a sample lattice of
N = 9407, all started off at the same initial condition.. The
corrugation potential amplitude is g = 0.1. Note the signifi-
cant jump in the total energy at the first time step, a charac-
teristic defect of the Velocity Verlet algorithm when started
off with all null velocities. Smaller time steps produce better
energy conservation.

nonconservative damping. Fig. [3| shows the supposedly conserved total energy
E,,: as function of the simulation time, for a few selected time step 6t. As we
can observe, the value 6r = 50 s keeps the total energy quite constant over the
relatively long simulated time, and is therefore the chosen integration time step
for our MD simulations. Note that atomic MD simulations usually require far
smaller time steps, typically in the order of one fs, and this makes the 50 micro
s time step appropriate. However, we are dealing with colloids which are far
heavier and therefore slower.

For relaxation, a number of numerical methods can be implemented. The
next two subsections summarize the methods adopted in this work and their
implementation.

3.2 FIRE minimization

In the weak-coupling region, where g < 1, we expect displacements of the atoms
proportional to Vy and a lowering in the the total energy of the system propor-
tional to VO2 (Eq. . This weak-coupling perturbative regime is compatible



with a single global minimum at a configuration very close to the perfect crystal.

FIRE, short for Fast Inertial Relaxation Engine, is a computational relax-
ation method used to quickly find the nearest local minimum from the starting
configuration, as described in detail in Ref. [I5]. It is based on the discrete
version of the following equation:

. F . v(1) F(r)
v(t) = — -y (@) [v(r)] ( - 13
n VOl TG 1)
where m and v are the mass and the velocity of a particle, and F = —-VU(x) is

the force acting on it obtained from the potential U = U, + U,y;. The last term
of Eq. is an addition to the standard equation of damped motion whose
purpose is to introduce an acceleration in a direction which is steeper than the
current direction of motion, via y(¢), when the power P(t) = F(¢)-v(¢) is positive.
To avoid uphill motion, the velocity is set to zero if the power becomes negative.
Furthermore, the velocity is also modified with:

V= (1—a/)v+ozv£ (14)
|F|

using the parameter @ = yot, with 6t being the integration time step. For our
minimization runs, we use LAMMPS’ default values for the most of the param-
eters involved. The only parameter worth tuning is the integration time step
6t. According to Ref. [I5], for atomic-scale molecular dynamics an estimate of
correct time step is 0t = 100ty p, where 6ty p is the integration time step used
with regular MD simulations. Following this rule, we use 6t = 500ps. Larger
time steps would result in fluctuations around the energy minimum, failing to
settle in the minimum in a satisfactory way - that is, reaching the energy or force
thresholds required for the algorithm to stop.

The FIRE algorithm needs to be given a stopping condition either on the
force acting upon the system or the energy lowering. After testing a few different
conditions, we decide to set a threshold on the force only, requiring its value to
reach that of 107*Vy/acen for the minimization run to stop.

3.3 Simulated Annealing

As the corrugation potential amplitude is increased, the potential becomes more
and more rugged, as sketched in Fig. |4l presenting several local minima instead
of a singular global minimum. Applying FIRE to this situation would only find
the closest local minimum, while the global minimum could sit far away from the
the current basin of attraction.

10
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Figure 4: A 1D sketch of the total potential as a function of
an arbitrary displacement coordinate. When the corrugation
contribution remains within the perturbative range one global
minimum is observed. As the corrugation amplitude is fur-
ther increased, the potential becomes more and more rugged,
presenting several local minima.

Simulated Annealing is a probabilistic computational method used to find
a global minimum in the presence of several local minima. Its name comes from
annealing, a technique used in metallurgy that involves heating and subsequently
"slowly” cooling a material in order to alter its physical properties. The system
is initially brought to an initial temperature Ty. This temperature should be high
enough to let the system explore configurations that sit outside the basin of at-
traction of a local minimum of the potential energy. For this reason a reasonable
choice of initial temperature for our model involves a value of kgTy compara-
ble with the largest potential barrier. However, a value too high may lead to
completely disordered configurations of the lattice sample. The choice of Ty is
therefore to be made with caution. As the maximum potential barrier in the
model is determined by the value of V{y, we start each annealing process from a
temperature Ty such that kgTp = 0.1 Vj.

After bringing the system to the designed initial temperature, the system is
cooled down following an annealing schedule. An annealing schedule establishes
how the temperature is brought down in steps to T = 0. Several different options
can be adopted as to how the temperature is decreased, most notably:

e linearly;

11
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Figure 5: The adopted Simulated Annealing schedule.

e "geometrically”, i.e. multiplying T by a factor 0 < @ < 1, close to 1, at each
step;

and with various other more elaborate or composite algorithms.

Simulated Annealing does not ensure that the global minimum is found over
a finite simulation time. However, by choosing an effective annealing schedule and
allowing the system enough time to be slowly cooled down, we can identify the
resulting minimum as the global minimum with a good degree of confidence. For
this work we chose to cool the system using series of linear ramps with different
slopes, using LAMMPS Langevin thermostat. The adopted annealing schedule is
depicted in Fig. [f] Equilibration times 71, f2, 73 can be tuned as needed, however
values 11 = 2.5s,t0 = 7.5s,t3 = 12.5s were able to yield satisfactory results.
Performing longer simulations or adding more linear ramps was not found to be
helpful in locating final configurations characterized by a lower potential energy.
At the end of the annealing, a FIRE minimization is performed to ensure that
the precise minimum is reached.

In order to avoid global deformations of the sample during simulations, we
decide to lock the external colloids of the sample in their lattice positions as a
rigid frame, following previous studies [I2]. In practice, in static minimizations
the external particles are not allowed to move from their initial positions, by
setting the total force acting on them as zero. In friction simulations, the outer
ring particles are kept as a rigid body, allowed to translate freely under the action
of the resulting total force.

12
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Figure 6: (a) Pinned state observed for g = 0.07, F = 0.01.
(b) Unpinned state observed for g = 0.07, F = 0.05. In panel
(a) we can observe clearly the presence of a transient before
reaching the pinned steady state.

3.4 Friction protocol

To study the frictional properties of the system, we start from perfect lattice
configurations rotated by the optimal twist angle 6y, ~ 5.305° and subsequently
fully relaxed simulation. We then apply a constant dragging force F to the colloid
directed along the x-axis.

Different values of g involve different scales for the forces and the resulting
velocities involved in the study of the dynamical properties of the system. For
each g we define the force Fig, which is the minimum force needed by a single
colloid to exit the potential well at the origin. The value of Fy; is given by:

(15)

where z = 4.279396 + 0.000001. This is obtained by numerically computing the
second derivative of the external potential V(r) evaluated at the first inflection
point [9]. It will therefore be natural as well as convenient to express forces in
units of Fy,.

For every force applied, we aim to distinguish between a pinned state and an
unpinned state. A pinned configuration is such that, after a transient, the center
of mass velocity of the sample vanishes, see Fig. [6h. An unpinned configuration
is such that the center of mass velocity of the sample fluctuates around a constant
finite average value (Fig. @b), resulting in approximately uniform linear motion
of the sample.

We start by applying a range of forces separated by relatively large intervals,
e.g. 0.1Fp;. This allows us to roughly identify an interval of forces in which a

13



depinning transition may take place. For relatively large values of g, g > 0.05 or
greater, we expect to find a transition between a pinned state and an unpinned one
already between two of these forces. For smaller g, however, F = 0.1Fy; is a force
too great to observe pinned states. Once the interval in which the transition takes
place has been determined, we proceed by probing more accurately the values
within that interval, e.g. by increasing the force by 0.01F;;. We also similarly
probe the interval immediately greater than the one containing the transition.
This will be useful when trying to estimate the value of the static friction force
F§, as later described in detail in Sect. 4. In the case of large enough corrugation
potential amplitudes this procedure may allow us to observe a pinned state at
weak forces and therefore identify an interval for the transition, but not in all
cases. With especially small g, a pinned state will not be observed: we may be
in the presence of a superlubric configuration, that is one in which every force
applied to the system, however weak, will cause the sample to slide in a linear
motion. Ruling out the presence of a pinned state at lower forces than those
studied is not achievable computationally: for any force that yields a running
state, we cannot rule out that applying an even smaller force will result in a
pinned state. Studying the frictional properties of the system therefore becomes
increasingly difficult as the forces at play get smaller, since longer and longer
simulation times are required for the sample to travel significant distances (i.e. at
least a few times the potential characteristic length a,, = 5.4 11s). In these cases
we can only estabilish an upper boundary for the depinning force. Furthermore,
as highlighted by Ref. [I3] (and shown in Fig. [7]), boundary effects are responsible
for oscillations of the relaxed potential energy as the sample travels along the x
axis. These oscillations act as potential barriers, thus ensuring that, for a small
enough force, a pinned state will always be observed as long as the size is finite. To
address this issue, the depinning transition should be investigated as a function
of the sample size. Due to time constraint we were not able to carry out this task
in full.

3.5 Steady states

To properly compute the frictional steady-state properties of the system, we must
first of all identify a steady state, namely a state in which the velocity of the
center of mass of the system does not change significantly over time, but rather
fluctuates quickly around a constant mean value. For all cases of study, the
system first undergoes a transient phase. The Langevin thermostat generating a
damped dynamic keeps the temperature of the system close to T = 0. Its damping
time constant, y~!, indicates the approximate time that it takes for the system

14
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Figure 7: Effect of the translation Ry of the sample lattice
center across the substrate potential for different sample sizes.
With increasing size, the observed oscillations decrease in am-
plitude, suggesting that they would vanish in the infinite-
size limit. Simulations carried out with values a,,; = 5.4 us,
0 = Onm, g = 0.0001 [I3]. The direction L q;; are oblique
directions at the Novaco angle.

to approach thermal equilibrium. In many situations, especially with forces far
from depinning, a steady state is reached quickly, i.e. in times comparable to
y~1. In many other cases, however, the system takes significantly longer times to
reach a steady state, due to complex internal phenomena: during this transient
phase the sample could incur in local depinning, while most of the sample remains
locked, or full re-organization of the lattice particles, before eventually reaching
a completely still configuration, or instead generate an avalanche-like depinning
motion. For these reasons identifying a steady state can be a tricky task, more so
because the total time duration of these transient phases can reach time intervals
approaching 50 s, extending the computational time required for these simulations
substantially.

Starting from a small force, we will run the simulation until a steady state
is reached and long enough so that the sample center of mass is allowed to travel
a distance greater than a few times ap,,. Starting from the resulting final state,
we then increase the force by a small step and again reach and maintain a steady
state. All transients are then discarded from the computation of the average

center-mass velocity.

15



4 Results

4.1 Static properties

Firstly, we verify how our simulated regimes compare with the NM theory. In
particular we compare our relaxed energies with the the results obtained by Ref.
[13] regarding the deviation from analytical one-phonon prediction, Eq. (1.2)), for
increasing g. We study the relation between the relaxed energy at the optimal
twist angle (NM angle) Oyy for our choice of a,e/acon and at different g =
Volka?,,.

For each value of interest of g ranging from 0.0001 to 1.0, we rotate the
perfect lattice sample by the angle Oyy =~ 5.305, perform complete optimization
of the system and compute the energy lowering per internal particle AU/Njy;.
Since the corrugation potential as defined in Eq. is zero-average, we expect
the potential energy per particle of an infinite hexagonal lattice sample to vanish.
This is due to the incommensurability between the two geometries (hexagonal and
decagonal), which results in every lattice particle being a random sampling of the
zero-average potential. In the finite size case, the energy exhibits fluctuations
around zero as function of the twist angle. The amplitude of these fluctuations is

. L -1/2
shown to decrease for increasing size faster than Nmt/

[13]. In order to counteract
the effects of the sample edge, as was done in Ref. [13], we report the energy
lowering AU = U,ejaxea — Unirial instead of the absolute energy.

The results, shown in Fig. [§] are consistent with those of Ref .[13]. At low
potential corrugation amplitudes, g < 0.001, where the weak-coupling approxima-
tion of the Novaco-McTague theory is valid, we observe that the energy lowering
per particle is nearly constant, close to the value predicted by NM theory at the
optimal misfit angle, whereas for greater values of g it deviates significantly.

Fig. [§ also allows us to compare the results obtained by a full relaxation run
(Simulated Annealing to target the global potential energy minimum, plus FIRE
to reach the bottom of the potential well) with those obtained by merely reaching
the nearest local minimum with a single FIRE run. In the weak-coupling region
the energy is proportional to Vg as predicted by the NM theory (Eq. : in
this region both methods are equally effective, as expected, at finding the global
minimum. But as the corrugation amplitude is increased the rugged aspect of the
potential makes Simulated Annealing essential for identifying the global energy
minimum.

16
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Figure 8: Relaxation energy per internal particle depen-
dence on the corrugation amplitude for a circular sample of
N;or = 81619 particles. The energy per particle is computed
accounting for the N, = 80527 internal particles only. Re-
sults are compared between FIRE and complete Simulated
Annealing optimization, as described in Sect. 3. For values
up to g = 0.3, the two methods yield identical results. For
larger g, Simulated Annealing is able to reach a deeper, pos-
sibly global, minimum.

4.2 Frictional properties

In order to study the frictional properties of the system, we apply a constant
driving force F along the x axis to a lattice sample that has undergone a mini-
mization run at the optimal twist angle Oyp7. As outlined in Sect. 3, measuring
the steady-state velocity of a configuration requires reaching a steady state after
going through a transient phase. Such transient phases can present varied aspects
and can protract for long time intervals, making the identification of steady states
a non trivial task. Fig. [9] shows a transient in the center-of-mass velocity of the
sample encountered in our simulations.

Once a steady state has been reached, we measure the average velocity of
the sample over a distance spanning at least a few times a,,,. The best possible
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Figure 9: Center of mass displacement along the x axis (left)
and center-of-mass velocity (right) as a function of the simula-
tion time, for a lattice sample of N = 9407 particles, obtained
imposing a normalized driving force F = 0.04 F;; over a sub-
strate potential characterized by g = 0.08.

estimate is simply:
A-xcm

At
where Ax.,, is the distance traveled along the x axis by the center of mass over a

<Ux,cm> = (16)

time Ar. An estimate of statistical uncertainty is provided by a standard deviation
on the velocity of the particle in the steady state.

We then define the average mobility along the x axis as:

_ <Ux,cm>
Mx F

(17)

where F is the dragging force applied to the sample. In the simplest ideal case of
a single free-sliding colloidal particle, the steady-state velocity is proportional to
the driving force:

Vs = r (18)

my

where y is the damping rate. From this follows that the mobility of a single
free-sliding particle is: .
my
which is fixed by the simulation parameters. We call this quantity the free-sliding
mobility.

Hfree = (19)

We proceed to compute the steady-state mobility as function of the applied
force. Fig. shows the mobility along the x axis for a number of different
g values. For higher g, we can observe clearly the presence of a transition from
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Figure 10: Normalized mobility pu./uyre. along the x axis
as function of the driving force F/Fi for different values of
corrugation potential amplitude g, for a lattice sample of N =
9407 particles. A depinning transition is clearly visible in
some of the observed configurations.

pinned states, where the mobility is close to zero, to unpinned states with nonzero
mobility. Low values of g, namely those lower than g = 0.05, do not show
evidence of pinned states in the range of forces measured. This absence of a
static friction threshold could be indicative of a superlubric configuration even
though, as outlined in Sect. 3, we cannot completely rule out the presence of
pinned states at even weaker forces than those probed.

Additionally, we compute the steady-state velocity along the y axis in a
similar fashion. We can thus measure the angle between the velocity and the

<Uy,cm>)
<Ux,cm> .

By reporting the angle of steady-state motion as a function of the applied force

applied force as:

0= arctan( (20)

we can check for evidence of directional-locking, that is a condition in which for
a range of applied force F the sample slides at a fixed angle 6 to the force. As
shown in Fig. [IT], for g = 0.07 we observe directional locking at low values of F
at an angle 6 ~ 28°.
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Figure 11: Angle 6 between the velocity and the applied force
as function of F/Fy;. The sample size is Ny,; = 9407.

4.3 Depinning transition

To address the Aubry-type transition in the present model, for each value of g
investigated we report a range of confidence for the static friction threshold. In or-
der to achieve that, we take the largest force which leads to a clearly pinned steady
state as a lower limit, and the weakest force which leads to a clearly unpinned
configuration as an upper limit. When we fail to detect any statically pinned
state, the lower limit is set to zero. Furthermore, in this window we estimate the
static friction force Fy from the data. In-depth studies of a 1D crystal-on-crystal
model have shown that in non-superlubric configurations u approaches the pin-
ning transition (with forces approaching the static friction threshold from above)
with the shape of a power law with exponent 1/2 < @ < 1 [2]. We attempt to
identify the same power law for the crystal-on-quasicrystal case, Fig. We
then fit our mobility data with the following function:

L :B(F_Fs)a (21)
Hfree Fig

The fitting parameters are B > 0, Fy; > 0 and 0 < @ < 1. This method provides a
reliable estimate for Fy. We thus perform a fit with the function above using the
measured mobility for a range of forces that extends from the first unpinned state
to a force 0.1 Fi4 greater. Using values beyond this range would be inappropriate,
since the shape of the curve deviates from the power law, as shown in Fig. 12
The resulting confidence ranges and estimated static friction thresholds are
reported in Fig. as functions of g. Fig. places the Aubry transition in the
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Figure 12: Power function fit performed on mobility data for
unpinned states with force up to 0.3 Fi;. The resulting fit
parameters are Fy = 0.1352F15, B = 1.2260, @ = 0.5557. The
data matches the fit results for the adopted range of forces,
but significantly deviates outside of that range.

window 0.01 < g < 0.04 where we can estimate that Fy vanishes.

Assessing the presence of superlubricity and the precise position and nature
of the Aubry transition is a difficult task that goes beyond the computational
resources available for this work. It would certainly require re-examining the

problem with larger sample sizes and make a serious size scaling of the depinning
thresholds.

5 Discussion and Conclusion

In this work we study the properties of an elastically deformable hexagonal lattice
over a quasiperiodic potential in a mismatched configuration at the optimal misfit
angle. We use a circular lattice colloid sample with harmonic colloid-colloid
interactions. Via FIRE relaxation and Simulated Annealing, we construct a fully
relaxed optimal starting point for successive friction simulations. verify that the
results are in agreement with NM theory predictions. Simulated Annealing leads
to better results than FIRE for values g = k:i” > 0.05. larger sizes of the
sample and at smaller forces, we predict that evidence of a superlubric phase

may be observed. By mapping the static friction threshold as a function of the
corrugation amplitude, we find evidence of an Aubry transition from a superlubric
state at low corrugation to a statically pinned state in the vicinity of g = 0.05.
We also find preliminary evidence of directional locking in the sliding near and
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Figure 13: Confidence ranges for the depinning transition and
estimated static friction threshold, Red data points are mea-
sured using a lattice sample of N = 9407 particles. Black
data points have been obtained using a sample of N = 81619
particles. The Aubry-type transition is estimated in the
0.01 < g < 0.04 range.

above the Aubry transition.

The preliminary results obtained in this work would require a systematic
size scaling to verify the presence and nature of the Aubry transition in this
unconventional 2D model. Also, it would be interesting to examine the possible
anisotropies of friction as a function of the driving direction.
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