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Abstract

In this thesis we study the temperature dependence of phonon friction
acting on a particle sliding through a simple cubic crystal, by extending
and evaluating an expression derived in a previous work. We focus on the
Debye-Waller factor, which carries all the temperature dependence of the
phonon friction. The main results reported here are: (i) the full isotropy of
the Q-dependence of the Debye-Waller factor for the simple-cubic crystal;
(ii) a factorization allowing us to predict the entire velocity and temper-
ature dependence of friction at the cost of its evaluation at one single
temperature, to a very good degree of approximation.
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Figure 1: A sketch of the particle-crystal model viewed down
the z axis. The simple-cubic crystal consists of N = N, 31 4o Dar-
ticles (black dots) of mass m connected by springs with elastic
constants K (nearest neighbors) and K’ (second /face-diagonal
neighbors). We assume K’ = %K . a is the equilibrium lattice
spacing. Red dot: the sliding particle, characterized by a very

large mass M; xq is its initial position.

1 Introduction

Friction is intimately connected to the dissipation of ordered kinetic energy into
vibrational waves of the objects in mutual contact. When these objects are crys-
talline solids, this amounts to the excitation of phonons. Recently a novel method
for evaluating this friction has been proposed [1]. This method, rather than on
traditional molecular dynamics (MD) simulations, relies on an analytical formula
derived using linear response theory in a simplified geometry (channeling). So far,
this method has been applied to crystals kept at zero temperature. In this work,
we will investigate the temperature dependence of friction, through an extension
of the same analytic method.

2 The model

The model, Figure [I] consists in a simple cubic crystal across which a particle
("the slider”) moves. We assume that the slider moves along a crystal high



Physical quantity Symbol Typical value

Length a 500 pm
Mass m 5% 10720 kg
Spring constant K 300Nm™!
Time (m/K)'?  1.3x107"s
Frequency (K/m)Y?2  7.7x101 st
Velocity a(K/m)?  3.9%10* m/s
Force Ka 1.5x 107" N
Energy Ka? 7.5x 10717 J
Temperature Ka?/kg 5.4 %10 K
Debye Temperature 6p 1958 K
Action a’?(Km)'?  9.7x1073! Js

Table 1: Physical quantities in the adopted model, with math-
ematical symbols, expressions, and their typical values.

symmetry direction, for example the x axis, with velocity vs; = vsrex. We also
postulate that it starts off at a symmetric position inside the crystalline channel,
i.e. exactly midway between lines of atoms. The kinetic energy of the slider
decreases due to a sequence of collisions with the crystal, where it is assumed
to generate only phononic excitations. More specifically, see Table [1|, the model
proposes a simple cubic crystal characterized by particles of mass m connected
by harmonic nearest and second-neighbor springs with elastic constants K and K’
and equilibrium lengths a and V2a, respectively, which guarantee the mechanical
stability and determine the phonon dispersions.

The previous work [1] derived the following analytical expression for the
average friction force which slows the slider down:

3
__7 oG [ 42 5 TaonT “W(Q) ,~W(Q+G.)
Fros) = g 3¢ [ SIS 0IIQIVIQ + Gap e MO e G

3
x Y Q- €(Q)(Q+G)- (@) L(Q.usL.7)
=1

40, vs1,
[(Qxvsr — wa(@))% + ($)21[(Qxvsr + wa (@))% + ($)?]
(1)

with  £(Q,vs1,7) = =
2w

where:
o T is the temperature;

o xq is the initial position of the slider;
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o G, are the reciprocal lattice vectors perpendicular to the direction x of the
slider velocity;

o V(|Q|) is the Fourier transform of the slider—crystal-atom interaction V(r),
which can be any function whose Fourier Transform exists.

o e is the Debye-Waller factor, defined below, which was approximated
to unity in the numerical calculations carried out in the previous work [I;

o 7y is the phonon damping rate;

o Q is the Q-integration domain, namely the octant with all positive compo-
nents.

In the present thesis, we restore the Debye-Waller factors, without approxi-
mating them with unity, and we study their effects on friction. Since all the tem-
perature dependence of friction in Eq. lies precisely inside the Debye-Waller
factors, their study is equivalent to an investigation of the explicit temperature
dependence of friction.

2.1 The Debye-Waller exponent

In Ref. [, the following expression for the Debye-Waller factor exponent is de-

rived: B2 3 .
= —_— . 2—
W(Q) = 7 ; ;@ (k)5 () + 1. (2)
where:

o @ is a point in reciprocal space;

o N is the number of atoms within the cubic crystal volume N a3 = (Ngqe a)*
(to which periodic boundary conditions are applied), or equivalently the
number of k points within the first Brillouin zone;

o 1BZ\ {0} stands for the sampling grid of the first Brillouin zone, without
the origin (see further below);

o A is an index spanning the three phonon polarization branches of the cubic
crystal;

o €,(k) is the polarization vector for the A branch evaluated at the k point;

o w,(k) is the corresponding angular frequency;



o o
g . /':'/
g€ 1r n
Z ]
(1,0,0) —
(1,1,0) ==~
l l l (1’1’1|) -----
0
0 1 2 3 4 5 6

k|-a

Figure 2: Phonon dispersion of the lowest transverse branch
(2 = 1) of the simple-cubic crystal, along three different di-
rections in reciprocal space. Note the acoustic behavior (fre-
quency vanishing linearly for |k| — 0), with different slopes
(speeds of sound) depending on the k-space direction.

o ny(k) is the average equilibrium number of quanta (phonons) of the A, k
oscillator at temperature 7.

In Equation the phonon frequency w,(k) is at the denominator. As a result,
any term with vanishing frequency diverges. In practice only the 3 k = 0 modes
have vanishing frequency, and therefore they are omitted from the summation.
However, the small-k terms have a very small denominator, leading to them dom-
inating the Debye Waller exponent. This issue will make it rather the sampling
of the small-k region rather delicate.

The number of phonons n,(k) carries all the temperature dependence of
Eq. , and it is evaluated according to Bose-Einstein statistics :

1

hw/l(k)) _1 '

na(k) =
exp(—kBT

(3)

Now, consider the phonon occupation factor, Equation , in the limit 7 —
0, Fig. B}

1
lim =0. (4)
-0 exp(h‘,‘:;(Tk)) _1

The number of phonons vanishes exponentially rapidly for T — 0 and, as a
result, the phonon factor (2n,(k)+1) — 1 in C(T) goes to unity, as temperature
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Figure 3: The generic trend of the phonon occupation factor
as a function of x = (kgT)/(hw).

decreases to zero, indicating that atoms oscillate even at T = 0. This zero-point
effect makes W(T') nonzero and thus the Debye-Waller different from unity even
at T = 0. Clearly this small effect was entirely neglected when the Debye-Waller
factor was approximated to unity [I].

At high temperature T > hw,(T)/kp, the phonon occupation factor becomes
approximately linearly dependent on T, reflecting the classical limit of Bose—
Einstein statistics:

2kp

21’1/1(k) +1 =~ hw/l(k)

T forT — +oo, (5)

At high temperatures, the thermal energy kgT is much larger than the spacing
between the quantized energy levels of the harmonic oscillator. As a result,
these levels can be regarded as quasi-continuous, and the oscillator crosses over
from quantum to classical behavior. If the phonon occupation number becomes
ny(k) =~ kpT/(hw,(k)), then the energy of that harmonic oscillator becomes
~ kgT, which coincides with result of the energy equipartition theorem. Finally,
we recognize the entire product ﬁm@n 1(k)+1) in Eq. as the mean square
oscillatory amplitude of a one-dimensional harmonic oscillator in the n,(k)-th
excited state. To sum up, Equation (2) shows a sum of the mean amplitudes
of oscillators for each polarization weighted by the projection between the wave-
vector Q and all the directions of oscillation.
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Figure 4: Phonon occupation factors for the simple-cubic
crystal with the dynamical parameters defined in Table[l], as a
function of temperature, evaluated at the k = (1, 2, 3)% point,
where the three phonon frequencies w; (k) = 1.80 (K/m)'/2,
wa(k) =2.24 (K/m)Y? ws3(k) = 2.48 (K/m)"?. The nonzero
intercept is the same, while the high-temperature approxi-
mately linear increase occurs with different slopes, each in-
versely proportional to its mode frequency.

3 Theory

3.1 Symmetry of the Debye—Waller exponent

In the present section we investigate the symmetry properties of W(Q). As shown
in Fig. [5, the numerical evaluation of W(Q) shows that its value only depends on
|Q|, indicating full rotational symmetry. Figure [f]also shows an exactly quadratic
dependence on |Q|.

However, at face value this rotational symmetry and quadratic dependence
are far from obvious. They require an analytical proof. The goal of the following
calculations is to factorize W(Q) into two terms: W(Q) = |Q|*> - C(T). In this
way we evaluate C(T) for any T and afterwards we bring its value inside the
numerical computation of the friction, at no extra computational cost within
the integration of Eq. . Without these symmetries, it would be necessary
to repeatedly evaluate the entire W(Q) for every Q in the grid over which the
integral of Eq. is computed.

The key is to split the entire summation into sets and derive the symmetry
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Figure 5: Debye-Waller exponent evaluated at the tempera-
ture T = 0.16 6p, as a function of |Q|?at, computed on a cubic
mesh of 1000 k-points within the first Brillouin zone. The re-
sulting prefactor C(T) =~ 1.73 x 107 ¢?. The upper panel
highlights the negligibly tiny deviations of the numerical de-
termination from this value, further confirming the Q-isotropy

of W(Q).

from each of these. First of all, it is useful to simplify the notation:

1 BAr 3 )
W(Q) = s ; ;|Q-eﬂ(k>| Ya(k). (6)
h
1 -
YNk, T) = 2mm(k)(m(k,T) +1). (7)

Another change in notation, useful for clearness, is to move the subscript up like
this €;(k) — €'(k) to gain space for the component index ef(k); from now on,
the two notations will be equivalent.

To start, consider a single k within the first Brillouin zone, compute the
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Figure 6: Simple cubic lattice, with one of the main diagonals
highlighted, for example (1,1, 1).

square and the sum on A like in Equation ,
Z(Qxe +Qy +0Q:€ /1) yt=

= 02’y + Y2 + )+
2, 12y,1 , 22y,2 | 32y3
+05(ey Y +€, Y™+ YO)+
+02 (XY + €2°Y? + €Y+
1 1yl 2y2 3
+20,0, (6,6, Y +e &Y +e €, 3y3)+
+2QXQZ(6161Y1 +€; E2Y2+6 €; 3y3)+

+20,0: ()€Y + e2€2Y? + €)€’Y?) .

The first three lines after the equal sign are quadratic in the components and
the last three have mixed terms. With the aim of the proof in mind it we look
for a way to make the brackets that multiply the quadratic term equal and to
make those multiplying the mixed ones vanish; in this way, the brackets can be
factored out and multiplied by the squared norm of @, obtaining C(T)-|@|?. The
idea is to sum other addends to this above, to cancel out or factorize the terms.
Focusing on the first three rows, it makes sense to look for other two addends in
such a way that Y4 keeps the same value and the sum of ef2 is equal to one, like
the norm of the polarization vector €. Now, it is useful to analyze the symmetries
of the crystal to deduce some simplifications.

3.1.1 Symmetries of the crystal

The crystal lattice considered has a simple-cubic structure and so the reciprocal
lattice, see Figure [6] Permuting the components of the position vector x of each
atom in the same way, one obtains the same crystal; so, rotations around on
of the main diagonal, see Figure [6] and reflections, with respect to the three
planes passing through the main diagonal and one of the three axis x,y,z, are
all symmetries. These symmetries are induced even on the reciprocal lattice.
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Consider a set of three k, obtained by permuting their components so that no
components remain in the same position, or in other words, obtained by rotating
one of them around the reciprocal lattice main diagonal, (1, 1, 1) in Miller indexes,
by 120°, namely,

k1= (k1, ko, k3)
ko = (ko, k3, k1) (9)
k3 = (ks, ki, ko),

it is possible to use the symmetry of the lattice, Appendix [5] to assert
YA (k1) = Y (ko) =Y (k3), (10)
and

€' (k1) = (e1, €2, €3)
€' (ko) = +(e, €3, €1) (11)

€'(ks3) = +(e3,€1, €2) .

Equation is justified by the fact that all the k dependence is within the
frequency w'(k), which is not a vector, meaning that does not rotate with the
crystal if one applies the rotational symmetry, so it sees these three points like
they were the same, due to their symmetry equivalence. Similarly, in the
components of the polarization vectors remain the same after the rotation, but
in this case the vector rotates with the lattice, and, since the rotation is the
same around the (1,1,1) diagonal, the effect is the same permutation of com-
ponents. Actually, each polarization vector is obtained as an eigenvector of the
dynamical matrix and, like any eigenvector, is defined only up to an overall sign.
Consequently, although the effect of the rotation is merely a permutation, solv-
ing the eigenvalue problem for the rotated dynamical matrix may yield the same
polarization vector but with the opposite global sign.

This argument seems to be inconsistent if one considers the points on the
(1,1,1) diagonal, because it is impossible to obtain permuted polarization vectors
starting from exactly the same k vector. In fact, polarization vectors are obtained
as eigenvectors of the dynamical matrix evaluated for a specific k, therefore, the
same matrix cannot have different eigenvectors. But in the case of a dynamical
matrix evaluated on a k on the (1,1,1) diagonal, the three eigenvectors have the
following proprieties:

1. one of the eigenvectors lies on the same direction of k, like always actually,
but in this case also on the main diagonal, which means that remains the
same after an arbitrary rotation around that axis;
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2. the two eigenvectors, which are not lying on the main diagonal, have the
same eigenvalue, therefore, they are defined up to a phase, and one can
rotate them by hand after the rotation of the lattice.

This shows that that the arguments is valid also for those k vectors.

3.1.2 Simplifying the quadratic terms

For now, all k vectors lying on the main diagonal are ignored. Consider the
sum over the set consisting of the three, aforementioned in @D, k vectors and
extract from those the terms which are carrying the quadratic x-component of
the Q vector. It is always possible to divide by three the total number of points
N inside the cubic first Brillouin zone, N = Ng’i go» Where Niige is the number of
k on a side of the cube, minus the ignored ones in the main diagonal, which
are Ngige. In fact, Ng’i do ~ Nside 1s a multiple of three for every Ngde > 2 as
Nfide—Nside = Nside(NSQide—l) = (Nsige—1) Nside (Nsige+1), and one of the three must

be a multiple of three. The argument is also valid for the remaining components.

DT D (0l ) + Oyl () + Q€ (k)Y (k)

k=ki,ko,k3 A (12)
> QeI Y () + e Y (k) +e(b)FY (K)%)
k=ky ko.ks
e (k1) €'(ka) €'(k3)\ [ef €& €
eﬁ(kl) €§(k2) €§(k3) =le; € €. (13)
egl(kl) 621(162) egl(kg) 6§ ef 6§

In Equation the three polarization vectors are arranged into a matrix, in
which the sign of the components are ignored, yielding a 3x3 matrix, whose
columns are normalized to 1. By substituting the values of each components,
using Equation , the rows also consist of vectors normalized to 1, because
the matrix is symmetric. This is true even considering the correct sign of each
component. This allows us to factorize the brackets multiplied by Y*(k), which
we recognize as the norm of the polarization vector, and we write the expression
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in Equation in this way:

S QA Y () + ()P Y (k)2 + ()P Y (K)°) =
k=kq,ko.k3

= Q7 [(& (k1)? + €/ (k2)” + € (k3)*)Y '+
Her (k1)? + € (ko)” + € (k3)") Y+
+(€ (k1) + €2 (ko)? + €2 (k3)H)Y?] = (14)

=Qll(el + & + )Y+

+(eF +e + X))y

+(45§’2 + efz + e%Q)Y?’] =

=2 +r%+7%).
Replacing the index x by y or z leaves the argument unchanged. Therefore,
the first three lines of Equation (§)), after a summation on the vectors shown in

Equation @, we obtain Equation .
QIY' +Y2+Y?) + Q2 + Y2+ YY) + Q2(Y 4+ Y2 +Y?) =
= 101P(Y +Y?+Y3) =
1
112 A_ 1192 1
= 10| ;nk) =glofF >, vt

k=ki,kak3 2

(15)

The last step is carried out by considering Equation (10), and it is useful
for coding purposes and for the approximation in Section Now, sum over all
the sets of three rotated k it is possible to make, which are a number M equal to
w. These sets are disjoint, we can label them using an index, and we can
recover entirety of the first Brillouin zone, excluding the diagonal, by summing

over that index, namely,

M M
Dol Y Yrw=gieryy 3 Yruo's
J=1 K=k kK] A TV kel =k ey by A

1 1BZ\{(k,k,k)} 1
— Z1012 A _ 102,
=gl ) Dyt =zleP-cm).

k A
where {(k, k, k)} stands for all the points on the main diagonal (1,1, 1). This is
similar to the final form for W(Q), since all temperature dependence is collected
in a separate term C’(T) that is multiplied by the squared norm of Q. However,
some steps are still missing. First of all, the terms on the diagonal still need to
be summed, and then it remains to show how the cross terms cancel out.
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3.1.3 Summing the k on diagonal

The statement we need to add the diagonal elements is the following:
1
2 _ 12
; 0 ex(k)Ya(k) = 0| ;Yxk), (17)

which can be derived by summing three times over the same k, which can be seen
as the permutation of itself:

3310 QP =10F S S k) =510F 3 Yk
A k=ki,ko,k3 A A (18)

= D@ calkPTih = 5108 31tk = lQP Y +1°),

where Y! = Y2 = Y, k1 = ky = k3 and conditions in Equation and
have been used. In this case, Equation is true, because k is always the
same. However, Equation seems to be problematic, because one cannot now
consider € as permuted. Consider again Equation ([14)), in this case becomes:

02[(el(k1)? + € (ko)? + € (k3)*)Y'+
+(€2(k)% + €2 (ko)? + €2 (k3) )Y+
H(EX(k1)? + € (ko) + €3 (k3)2)Y?] =
= 02[(3el (k)% + 3€2(k)H)Y +Y7]

(19)

where €3(k)? + €2(k)? + €2(k)? = 1, because €3(k) has equal components. Now,
must be 3€l(k)? + 3€2(k)? = 2 to obtain Equation . In order to prove that,
it us useful to prove another statement:

12 12 12 22 22 22 _
€ tEgtEsTE tE e, =2, (20)

X

where 6)},9 is the x component of a vector obtained by rotating by an angle 6

€' (k) around the usual direction (1,1,1), etc. It makes sense, since:

12 22 _ 12 12 12 22 22 22 _
36, +3€6 =€ tEtEHE tEHEG =

2 12 12 22 22 22 _
+ex’%,,+ex,4(7,r+e)C +e +6x’4?n = (21)
_ 12 1

2 2 2
1 2 2
=€ +€ +€ +€ +¢

_ 1
=€, P
>3

2 2
+€Z2 =2.

Vectors €' and €? are orthogonal to each other and to € which lies in the
(1,1,1) direction. This means that €' and € lie in the same plane orthogonal
to the direction (1,1,1) like their rotation at any angle. A change in coordinates

14
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Figure 7: Unit vectors €' on the y-axis and € on the x-axis,
and their counterclockwise rotations by two arbitrary angles
6 and ¢ (angles in radians).

leads to Figure[7], which shows €' and €2 and two of their rotation at two random
angles. With a symmetry argument, in particular, a swap of axis, the same we

used before for permutations in three dimensions, we assert:
/12 r12 r12 r22 r22 /22 _ /12 /12 /12 /22 /22 /22
y tE gt e, TES tE G TE =€ teE 1€ €7 e e, (22)

which leads to:

/12 /12 ’1 2
206, +€9t€,+E +€9+ ¢)—
_ 12 12 ’1 22 192 '22 2, 12 '1 92 92 192
=€ TEgTELTE FTEYTE L TE FEyTE ,FET e FE, =06
712 712 712 ’ 102 192
:el +616.+ 1¢+62 +6x29+6x2¢=3.
(23)
This can be translated in three dimensions, i.e. in the previous coordinate system,
obtaining:
12 22 12 12 12 22 | 22
€ +e +e¢+e +e +e¢ € +EgtE ,TE HE +e¢—
2 2 2
:el +el vel v e +E2 +e2,,
Z 0 Z,¢ z,0 2,0 (211)
12 22
3(e, +e +e¢+e +69+E¢)—
2 2 2 2
= € +61 o+ €yt Er +€2 +62¢—

Exactly what we need to add diagonal elements in Equation (16|
To obtain more precisely Equation , consider a vector v on the plane
orthogonal to (1,1, 1). Rotate it by 90° around (1,1, 1), to get w L v.

vx 1 UZ_Uy
v=|vy Hw:@ vy — 0 | - (25)
Vg Vy — Uy

15



Then, considering vy + vy + v, = 0 and wy + wy + w; = 0, we just sum the square
components and obtain:

2,,2_.2 2_ 2 92
vy + Wy = vy + Wy = v +wy (26)

3.1.4 Canceling cross products out

The cross products are not eliminated by merely summing a set of three rotated
k vectors, but require also summing over the k vectors obtained by flipping the
sign of one or more components, i.e. those reflected across the x, y, and z axes:
ki1 = (ki ko, k3)
ko1 = (—k1, ko, k3)
ksi = (ki,—k2, k3)
ki = (k1, ko, —k3),

(27)

where the first index stands for the reflection and the second stands for the
permutation shown in Equation (9). In order to simplify the notation, we denote
eﬁ(ki_,-) by pij, because the following proof is the same for any A; for example
6%(](12) becomes x19. The matrices below show the matches between a k and the
cross product term related to Q,Q, for a specific 4, Equation , which is not
expressed because irrelevant:

ki1 k1o ki3 X11y11 X12Y12  X13Y13
ko1 koo ko3 _, [¥21y21 ¥22y2:2 xa3yas| (28)
k31 ks k33 X31Y31 X32Y32 X33Y33
ky ki kg3 X41Y41 X42Y42 X43Y43

Computing the sum Z?zl Z?:l Xj;yj; means summing over a single column and
then sum the result for all the others. Using polarization vectors symmetries,
Appendix [5

X11 =X21 Y11 = —Y21 X31 =X41 Y31 = —Y41
X12 =X32 Y12 = —Yy32 X22 =X42 Y22 = —Ya4 (29)
X13 = —X23 Y13 =Y23 X33 =—X43 Y33 = V43.

We show that the summation over each column vanishes:
3 4
X1yl +X2iy2i + X3iy3i + X3;y3i =0 = Z iji)’ji =0. (30)
i=1 j=1
The result is the same for every other cross product. When vectors are on one of
the diagonals of the cubic first Brillouin zone, we cannot sum over all permuta-
tions and reflections because some terms are equal, so we cannot sum the same

16



term several times. In fact, in this case it is not even necessary to sum over all
permutations and reflections.

ki=(k,k, k)
k2 = (_k’ k’ k) (31)
ks = (k,—k, k)
ky=(k,k,-k),

The same argument used above leads to the canceling also of these products. The
last term which has neither permutations nor reflections is k = (7, 7, 7). However,
it is sufficient to count only his contribution to get the same simplification we
get with all the other sets. This implies that every term inside the brackets in
Equation , which multiply the cross product, vanishes and so do the last three
lines of Equation .

3 3
2Qny((Z: ijly]l)lyl + (Z Zx]ly]l)QYZ + (Z Zx]ly]l)3Y3)+
i=1 j= i=1 j=1 i=1 j=
3
+2QxQz((Z ijlzjl)lyl + (Z ZXJIZJI)QYZ + (Z Zx]lzjl)3Y3)+ (32)
i=1 j= i=1 j= =l j=
+2QyQZ((Z Z yjtZ]l)1Y1 + (Z Z )’]let)QYQ + (Z Z y]lZ]l)SY?)) =
i=1 j=1 =1 j= i=1 j=1
The desired form is achieved:
W(Q) = C(T)IQF, (33)
where C(T) is
1 1BZ\{0} 3
C(T) = — Zkl 2om (2nﬂ(k T)+1). (34)

Equations and are the main theoretical result of the present thesis.

3.2 A Debye-like approximation
Using a Debye-like approach, we write an approximate but simpler expression for

the C(T) factor:

1BZ\{0}

3 kp 2%
DI A C A CE Wl p=0 0 3)

=1 a

17



Therefore:

C (T)—i/kD f 2 +1| g(k)dk =
D TGN o 2mugk exphvsk—l 8 =

kT
1 [fkoop 2 Na?
:—/ 1| Kk,
2N Jo  2musk \ exp kl));T -1 2n
ha®  [FP 2
Cp(T) = 2 / % i1|kdk. (36)
8n2muy Jo exp Bk _
kT

After a change of variables, x = fivgk /(kgT), we can reformulate Eq. as:

a(kgT)? (P72
Cp(T) = ——— — + 1) xdx. 37
p(T) 8r2mhv? /() (expx -1 ) (57)

By taking the low-temperature limit and using fooo 2x/(e*—1)dx = 72 /3, we obtain
the following expression:

a3

24 mhv?

ha?’ ) )
Co(T) = gk + (kyT) (33)

6 m2m
On the other hand, for T > 6p one can expand the exponential in Eq. for
small x, carry out the integration, and obtain the asymptotic high-temperature
expression:

CD(T) = 1 kBT, (39)

where 7 cancels out, indicating a classic (i.e. non quantum) behavior.

Based on the results illustrated above, in practice the numerical evaluation of
W(Q), can be divided into two parts. The first part consists of trivially evaluating
the squared norm of Q, while the second involves the computation of C(T), either
based on the exact numeric method discussed above or with some approximate
model formula, as discussed in the next Section.

3.3 Useful symmetries for the evaluation of C(T)

To accelerate the calculation of the summation, one can exploit the symmetry
of YA(k), both under reflections and translations, allowing the summation to be
performed over only a portion of the first Brillouin zone and then multiplying the
result by an appropriate factor. In particular, the symmetry under reflections and
permutations reduces the first Brillouin zone to the subset of points that yield
independent values of Y. In practice, the symmetry with respect to reflections
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Figure 8: The square is a 2D representation of the first Bril-
louin zone. The top and right edges of the square are high-
lighted because they lie within the 1BZ. The red triangle indi-
cates the region over which I am summing. As can be clearly
seen in this simplified diagram, all points strictly inside the
red triangle correspond to 7 other distinct points in the 1BZ,
for a total of 8 equivalent points. In contrast, points on the
diagonal and on the outer edges correspond to 3 other points,
for a total of 4 equivalent points. Finally, the point at the
center corresponds only to itself.

allows us to perform the k-points summation only over the first octant of the
1BZ. Additionally, the symmetry under rotations permits the summation to be
carried out only over the piece of the first octant in which no triplet (kq, ko, k3)
is a permutation of another. After performing this summation, the multiplicative
factor to obtain the correct value of C(T) is 8, corresponding to the reduction
to the first octant, and 6, because there are 3! triplets obtainable by permuting
the same three components, corresponding to the further reduction within this
region, 48 in total. The main difficulty is to exclude from multiplication with
48 the boundary points inside the symmetric zone considered, in Figure [§f there
is a simplified representation of what this means. The three-dimensional case is
obviously more intricate, for that see Appendix [B]

3.4 Size scaling for the C(T) coefficient

We are actually interested in the Ngge — +oo limit for the Debye-Waller factors,
and thus for C(T). A direct computation of this condition is of course impossible.
However, we can obtain an estimation of this quantity by a standard finite-size
extrapolation, also called finite-size scaling. For a given temperature T, we plot
the C(T) as a function of the inverse of Ngge. This illustrates the size scaling, and
allows us to extract the desired infinite-size value. Figure[9 reports the finite-size
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Figure 9: Size scaling of C(T') as a function of Ak « Ns_i(lle’
at temperature T =1 6p. Black and blue points: numerically
computed values of C(T). Lines: linear fits based uniquely
on the 3 highlighted (red or brown) points. The two scalings
(even/odd Ngqe appear approximately linear. This makes it
possible to use a simple linear regression to extract the lim-
iting C(T) value for Ak — 0 with good accuracy. As can be
seen the two different linear regressions lead to very similar
intercepts at Ak = 0. Eventually we take the average between
those two intercepts as our best estimate for the thermody-
namic limit of C(T). Inset: detail of the points used for the
linear fits.

scaling of C(T) as a function of Ak o Ns_iclle: it clearly shows an approximately
linear scaling of C(T). First, we need to explain why Fig. [9] shows two separate
trends instead of just one.

Figure [10] sketches a one-dimensional explanation of the observed even-odd
effect. Recall that every addendum in the summation in Eq. contributes
proportionally to w,(k)~!, and that w;(k) o |k| for small |k|, see the acoustic
behavior of the phonon dispersion reported in Fig. 2] As a result, the k closest to
the origin give the greatest contribution. Now consider two first Brillouin (1BZ)
zone grids: one built using odd Ngjqe and one using even Ngjqe, €.g. the successive
integer. In the even case the origin must be excluded from the summation, while
in the odd case the grid involves no k at the origin. Consider the region around
the origin of for these two 1BZ grids, containing a similar number of k points,
in such a way that we can establish a one-to-one correspondence between two k
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Figure 10: Two sampling grids for a one dimensional 1BZ,
with Ngge = 7 (top) and Ngge = 8 (bottom). Observe that
the k points closest to the origin for the odd Ngqe = 7 grid
are closer to the origin than the closest ones of the Ngqe = 8
grid. The tics enumeration shows a one-to-one correspon-
dence between the points within the two 1BZ with different
Ngide based on the closeness to the origin.

points around the origin. The pair of shortest k points in the odd grid always
sit closer to the origin than the corresponding pair in the even grid. The formula
for the uniform 1BZ grid for the Ngge X Nside X Nside simple-cubic lattice is the
following;:

1 1 1 2

k=2 LMy, Ny) =——4 —\, ——+ y veey = 40
e A A (40)
If, for example, Ngqe is even, then the shortest k vector is:
: n 2r 1 :

ko gql = 120(57——=.0,0)[ = < = [21(——,0,0)| = |kgyenl

odd 2(IVSide - 1) Nside -1 Nside Nside even

= w/l(klodd) < wﬂ(kleven) = w/l(klodd)_l > w/l(kfeven)_l >
(41)

where the index i stands for the one-to-one correspondence sketched in Fig. [I0]
This shows that the addends from the odd-Ngqge grid give a larger, dominant
contribution near the origin: this is the term responsible for the even/odd splitting
in the C(T) scaling shown in Fig. [9]

Eventually, as illustrated in Fig.[d] to evaluate the infinite-size estimation of
C(T) we carry out two separate linear fits of the numeric finite-size estimations
obtained by evaluating Eq. with the following Ngqe values: (481,491, 501)
and (480,490, 500). We then take the average between the two intercepts of those
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Figure 11: Temperature dependence of C(T). The reported
values reflect the infinite-size limit, obtained by linear ex-
trapolation plus averaging of the intercepts as discussed in
the text. Inset: detail of the low-temperature region. This
result applies to the simple-cubic lattice, with the mechanical
parameters K, K’ = K/2, m, and a listed in Table .

two fits (which are extremely close anyway, a deviation < 0.0002%) as our best
estimate for the Ny, — oo limit of C(T).

4 Results

With the recipe to evaluate the infinite-size limit of C(T) detailed in the previous
Section, we report the resulting overall dependence in Fig. [11] C(T) grows ap-
proximately linearly at temperatures exceeding the Debye temperature. At lower
temperature, C(T) rounds off quadratically to a constant as the Debye approxi-
mation predicts, Eq. . The order of magnitude of C(T)/a?, in the 107 range,
reflects the numerical value of Planck’s constant # = 1.09 x 107%a?(Km)'/? in
model units, for the parameters assumed in Table

Figure [12| shows a comparison of the numerically exact C(T), Eq. with
the approximate one obtained through the Debye model, Eq. : significant dif-
ferences are visible. These discrepancies are caused by an overall overestimation
of the vibrational frequencies that the Debye model does, see Fig.

The deviations of the Debye model from the exact C(T) can be corrected by
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Figure 12: A comparison between the numerically exact C(T)
of Fig. |11]and Eq. — blue dots, and the approximate De-
bye form Cp(T), Eq. — red line, where speed of sound
has been tuned to match exactly the C(T) o T? raise at small
T. The Debye model underestimates the exact result by ap-
proximately 2.922 x 107642 at T = 0; this underestimation
increases with temperature, and at large T > 6p, it deviates
approximately linearly with temperature. Inset: detail of the

discrepancy at low temperatures. A stands for the difference
C(0) = Cp(0).

(1) introducing an additive term A that brings the 7 = 0 value to the exact one:
A =C(0) — Cp(0) ~2.922x 107 42, (42)

where Cp(0) is provided by Eq. . Additionally, we add the contribution of
two 7 Einstein”-type oscillators, as follows:

Cae(T) = Cp(T) + A+ —DL— 4 T3 (43)
exp = — exp o —
By carrying out a least-square fit of 224 numerically determined values of C(T)
between T =0 0p and T = 5 6p, we obtain p; =~ (=3.406 x 1076 +1.22x 1077) a?,
po =~ (2328 +20.97) Ka?/kg, p3 ~ (9.227 x 1070 £ 1.30 x 1077) a? and py =~
(828.9 + 1.51) Ka?/kg Figure |14 reports the result of this fit.
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Figure 13: A comparison between the Debye phonon disper-
sion and the exact frequencies reported separately for the 3
phonon branches A = 1,2,3. The broad band of blue points
results from the vibrational frequencies being calculated along
numerous directions in k space, each associated with its pecu-
liar acoustic dispersion. For the transverse branches A =1, 2,
the Debye model systematically overestimates the exact fre-
quency across the majority of the 1BZ. The longitudinal
branch 1 = 3 has a range of |k| where the exact frequency
is larger than the Debye model, but for large |k| near the 1BZ
edge, even the longitudinal phonon comes below the Debye
dispersion. On average, we can safely state that the Debye
approximation overestimates the vibrational frequencies.

Figure reports the Debye-Waller factor exp(=W(Q)) over an extremely
broad Q range, far larger than the one employed for the friction computation [1J,
which extends out to QOmax =~ 72.5 a~ . For temperatures lower than 6p, in the
0 — Qmax range the attenuation is smaller than 10%, therefore we expect a small
difference between the friction evaluated without and with the Debye-Waller fac-
tor. Even at T = 0 a nonzero attenuation persists, due to the zero-point motion
effect, but, as shown in Fig. [15] this correction is quite small in the relevant Q-
region. In the previous work [I], the integration domain Q for the integration
implied by the calculation of phonon friction, Eq. , was restricted to a finite
box, thanks to the rapid decay of the Fourier transform V(|@|) of the interaction
potential. However, different interaction potentials may lead to different large-|Q|
behavior of V(|Q|), possibly requiring a larger integration domain. As illustrated

24



C(T)/a?

o W(Q)

4x104 F :
E 0
Q
£ -4x10* -
O _gx10* -
2.5x10
1.75%x104
1x104
2.5%10
0 0.5 1 1.5 2 25 3 3.5 4 4.5
T/6p
Figure 14: The best-fit Cq¢, Eq. (43]); top panel: its relative
deviation from the numerically exact C(T).
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Figure 15: The Debye-Waller factor e™"(@) as a function of
the length of the wave vector Q. The higher is temperature
the stronger is attenuation effect. The effect becomes relevant
for high magnitudes of Q. Inset: the Q range is restricted to
the size of integration domain used for the friction evaluation.
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Figure 16: Comparison of the phonon friction evaluated
(i) with the Debye-Waller factors approximated with unity
(dot-dashed line); (ii) with the Debye-Waller factors appro-
priate for T = 0 (solid line); and (iii) with the Debye-
Waller factors for an intermediate temperature T = 1.62 6p
(dashed line). The Q-integrations are carried out over a mesh
of 4003 points, and the slider-crystal interaction potential
V(r) = €| %)6 - 2(%)3]. As expected, accounting for
a Debye-Waller factor smaller than unity primarily leads to a
decrease in friction, best visible at the peak (inset).

in Fig. inclusion of the exact Debye-Waller factor, improves the integral con-
vergence, especially at large temperature. This allows one to use this method to
investigate a wider range of interactions.

Figures [16] and [17] report the comparison between the phonon friction eval-
uated without Debye-Waller factors [1], with one that includes those factors, as
evaluated in the present thesis, for T = 0 and for an intermediate temperature
T = 1.620p. The direct comparison indicates that replacing the Debye-Waller
factors with unity is not such a bad approximation. Especially when zooming on
the peak, small deviations are visible, and those deviations could only increase
at higher temperature.

Instructed by Fig. [I7, we try to fabricate an approximate rule to quickly
evaluate friction at any temperature. We start by defining the following dimen-
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Figure 17: Quotient of friction evaluated for two different
temperatures or approximating the Debye-Waller factor with
unity. The velocity dependence of these ratios are quite sim-
ilar, strongly hinting at the possibility of a simplified law to
evaluate friction at any temperature based on the friction
evaluation carried out without Debye-Waller factors.

sionless friction ratio:

Fo(vst,) Fr(vst,)

—F——=r(vs) = ~ M (vgy), 44
Fp-w=1(vs1,) (44)

Fp.w=1(vsp)
where b(T) is an increasing function of T.

Equation leads to Fig. . There is a way to determine b(T), using
the fact that C(T) is small. For max(|Q|,|Q + G|) < C(T)~!, we perform an
expansion of the Debye-Waller factor:

e W(Q)-W(Q+GL) _ ,~(ICP+Q+GLI))C(T) o | _ (1012 + 10 + G . |HC(T), (45)
= Fr(vs) = ... [1=(1QP+|1Q+G.|>)C(T)] ... = Fuopwl(vss) — P(vs1)C(T).
(46)

Here P(vsy) is obtained from Eq. by substituting the Debye-Waller factor
with |@]? + |@ + G .|? assuming that the relavant integration converges. If we
substitute Eq. into Eq. , omitting the vg; dependence, we obtain:

Frvst) _ Fow=1(ost) - Pest)C(T) _ Plsl)C(T) (_P(USL)C(T)

Fpw=1(vsL)
(47)

Fpw-1(vsr) Fpw=1(vsL,) T Fpw-i(vsL)
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Figure 18: The ratio r = Fy/Fp.-w=1 (red solid line). For

another temperature, e.g. T = 1.620p, then we can obtain
Fr/Fpw=1 as r~ T Thin lines: r—@) for increasing b(T),
until at the right value b(T) ~ 7.89 there is a perfect match

with F1.626, /FD-w=1.

Observe further that
Fo(vsL) ( P(vgr,)C(0)
— 2 —exp|-——H—=
Fpw=1(vs1,) Fpw=1(vs1,)

By comparing the expression for b(T) with the formula for C(T), Eq. ,
we formulate an interpretation of b(T) as an effective boson factor (2n,(k) + 1),

) =r(st) = b(T)= % (48)

namely, the weighted average of the boson factor over the 1BZ, and over the three
phonon branches. Indeed, notice that the temperature dependence of (2n,(k)+1),
Fig. [3] is similar overall to that of C(T), Fig.[11]

5 Discussion and Conclusion

We prove a factorization of the Debye-Waller exponent into a temperature-depen-
dent factor C(T), and a Q-dependent term, namely |@|>. We focus on C(T) and
derive its exact expression, and a Debye-type approximation thereof. We take
advantage of the obtained explicit formula to compute the phonon friction, at a
specific temperature, with a computational cost similar to that of previous work
[1] where the Debye-Waller factors were approximated with unity.

Moreover, we obtain a nicely well approximate method to evaluate phonon
friction at any temperature using a relatively simple formula, based on the nu-
merical evaluation of friction done with the Debye-Waller factors replaced by
unity.
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Finally, we observe that the rapid large-|Q| decay of the Debye-Waller factor
could be taken advantage of to investigate slow-decaying Fourier-transformed
slider-crystal interactions.

A A few basic crystal symmetries

We obtain phonon polarization vectors €,(k) and frequencies w, (k) by diagonal-
izing the dynamical matrix D,,. For these monoatomic crystals, the eigenvalue
equation:

W3 (k) €2 (k) = " Dy () €1y (k) (49)

where the elements of the dynamical matrix are:

’

D, (k) = %(1 —cos(kya)) + 2K

- (2 = cos(kya) cos(kya) — cos(kya) cos(k.a)),

’

Dy, (k) = 2%(1 —cos(kya)) + 2K

- (2 = cos(kya) cos(kya) — cos(kya) cos(k.a)),

’

Do) = X (1~ cos(hea) + 2

- (2 = cos(kya) cos(k.a) — cos(kya) cos(k;a)),

’

2K
Duv(k) =

m

sin(k,a) sin(k,a) .
(50)
From here, it is possible to deduce a symmetry by reflection with respect to the
origin, because the minus sign inside the elements of the dynamical matrix does
not affect the cosines and the sines multiply each other, so as to cancel the minus
sing out:
wa(-k) = wy(k)

o1
ex(—k) = €,(k). oy

It is also possible to derive the symmetry under single component reflection:
k, — —ky, indicating k" the vector obtained with such a transformation. The
symmetries are the following:

w (k') = wa(k),

, , (52)
€ru(k’)=€,(k), €i,(k')=-€,,(k), forv+upu.

See [1].
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B Symmetry for faster C(7) computation

Here is a more specific calculation to exploit the Y, (k) symmetry, or equally w, (k)
symmetry. Referring to Table [2| one can compute C(T) faster in the following

way:

14
C(T) = 6% IR AGE (53)

n=1 keSS, 4
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n Sp = Set of k I, = Symmetry factor
1 |0<x<y<z<m 8:-6=48
2 |0=x<y<z<nm 4-6=24
3 |0<x=y<z<m 8§-3=24
4 |0<x<y=z<m 8§-3=24
5 |0<x<y<z=nm 4-6=24
6 | O=x=y<z<nm 2:3=6
7T 0<x=y=z<nm 8-1=8
8 |0<x<y=z=nm 2:-3=6
9 |0=x<y=z<nm 4-6=12
10| 0=x<y<z=nm 2:-6=12
11| 0<x=y<z=nm 4-3=12
12| 0=x=y<z=nm 1-3=3
13| 0<x=y=z=nm 1-1=1
14| 0=x<y=z=nm 1-3=3
15| 0=x=y=z<nm 1-1=1

Table 2: The first columns is just an enumeration done for
clearness. The second contains all the set one needs to dis-
tinguish to avoid summing over terms that are repeated or
that do not exist inside the first Brillouin zone, where x, y, z
indicate the components of k. The third column contains the
symmetry factor to multiply to the summation over the set on
the left to get the entire first Brillouin zone. The explicit mul-
tiplication used to obtain the symmetry factor is intentional:
the first factor represents the number of reflections that can
be applied to a term within the set to yield a point inside the
first Brillouin zone; the second factor represents the number
of permutations that can be performed for the same purpose.
For completeness, the point (0,0, 0), i.e. set 15, is listed here,
but in the computation of C(T) has to be excluded.
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