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Abstract

In this thesis we study the temperature dependence of phonon friction

acting on a particle sliding through a simple cubic crystal, by extending

and evaluating an expression derived in a previous work. We focus on the

Debye-Waller factor, which carries all the temperature dependence of the

phonon friction. The main results reported here are: (i) the full isotropy of

the Q-dependence of the Debye-Waller factor for the simple-cubic crystal;

(ii) a factorization allowing us to predict the entire velocity and temper-

ature dependence of friction at the cost of its evaluation at one single

temperature, to a very good degree of approximation.
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Figure 1: A sketch of the particle-crystal model viewed down

the 𝑧̂ axis. The simple-cubic crystal consists of 𝑁 = 𝑁3
side

par-

ticles (black dots) of mass 𝑚 connected by springs with elastic

constants 𝐾 (nearest neighbors) and 𝐾′ (second/face-diagonal

neighbors). We assume 𝐾′ = 1
2𝐾. 𝑎 is the equilibrium lattice

spacing. Red dot: the sliding particle, characterized by a very

large mass 𝑀; 𝒙0 is its initial position.

1 Introduction

Friction is intimately connected to the dissipation of ordered kinetic energy into

vibrational waves of the objects in mutual contact. When these objects are crys-

talline solids, this amounts to the excitation of phonons. Recently a novel method

for evaluating this friction has been proposed [1]. This method, rather than on

traditional molecular dynamics (MD) simulations, relies on an analytical formula

derived using linear response theory in a simplified geometry (channeling). So far,

this method has been applied to crystals kept at zero temperature. In this work,

we will investigate the temperature dependence of friction, through an extension

of the same analytic method.

2 The model

The model, Figure 1, consists in a simple cubic crystal across which a particle

(”the slider”) moves. We assume that the slider moves along a crystal high
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Physical quantity Symbol Typical value

Length 𝑎 500 pm

Mass 𝑚 5 × 10−26 kg

Spring constant 𝐾 300Nm−1

Time (𝑚/𝐾)1/2 1.3 × 10−14 s

Frequency (𝐾/𝑚)1/2 7.7 × 1013 s−1

Velocity 𝑎(𝐾/𝑚)1/2 3.9 × 104 m/s
Force 𝐾𝑎 1.5 × 10−7 N

Energy 𝐾𝑎2 7.5 × 10−17 J

Temperature 𝐾𝑎2/𝑘𝐵 5.4 × 106 K

Debye Temperature 𝜃𝐷 1958 K

Action 𝑎2(𝐾𝑚)1/2 9.7 × 10−31 Js

Table 1: Physical quantities in the adopted model, with math-

ematical symbols, expressions, and their typical values.

symmetry direction, for example the 𝑥 axis, with velocity 𝒗𝑆𝐿 = 𝑣𝑆𝐿𝒆𝑥. We also

postulate that it starts off at a symmetric position inside the crystalline channel,

i.e. exactly midway between lines of atoms. The kinetic energy of the slider

decreases due to a sequence of collisions with the crystal, where it is assumed

to generate only phononic excitations. More specifically, see Table 1, the model

proposes a simple cubic crystal characterized by particles of mass 𝑚 connected

by harmonic nearest and second-neighbor springs with elastic constants 𝐾 and 𝐾′

and equilibrium lengths 𝑎 and
√
2𝑎, respectively, which guarantee the mechanical

stability and determine the phonon dispersions.

The previous work [1] derived the following analytical expression for the

average friction force which slows the slider down:

𝐹𝑇 (𝑣𝑆𝐿) =
𝜋

2𝑚𝑎3

∑︁
𝑮⊥

𝑒−𝑖𝒙0·𝑮⊥

∫
Ω

𝑑3𝑄

(2𝜋3)
𝑄𝑥𝑉 ( |𝑸 |)𝑉 ( |𝑸 + 𝑮⊥ |) 𝑒−𝑊 (𝑸) 𝑒−𝑊 (𝑸+𝑮⊥)×

×
3∑︁
𝜆=1

𝑸 · 𝝐𝜆 (𝑸) (𝑸 + 𝑮) · 𝝐𝜆 (𝑸)L(Q, 𝑣𝑆𝐿 , 𝛾) ,

with L(Q, 𝑣𝑆𝐿 , 𝛾) =
𝛾

2𝜋

4𝑄𝑥𝑣𝑆𝐿

[(𝑄𝑥𝑣𝑆𝐿 − 𝜔𝜆 (𝑸))2 + ( 𝛾2 )2] [(𝑄𝑥𝑣𝑆𝐿 + 𝜔𝜆 (𝑸))2 + ( 𝛾2 )2]
,

(1)

where:

◦ 𝑇 is the temperature;

◦ 𝒙0 is the initial position of the slider;
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◦ 𝑮⊥ are the reciprocal lattice vectors perpendicular to the direction 𝑥 of the

slider velocity;

◦ 𝑉 ( |𝑸 |) is the Fourier transform of the slider–crystal-atom interaction 𝑉 (𝑟),
which can be any function whose Fourier Transform exists.

◦ 𝑒−𝑊 (𝑸) is the Debye-Waller factor, defined below, which was approximated

to unity in the numerical calculations carried out in the previous work [1];

◦ 𝛾 is the phonon damping rate;

◦ Ω is the Q-integration domain, namely the octant with all positive compo-

nents.

In the present thesis, we restore the Debye-Waller factors, without approxi-

mating them with unity, and we study their effects on friction. Since all the tem-

perature dependence of friction in Eq. (1) lies precisely inside the Debye-Waller

factors, their study is equivalent to an investigation of the explicit temperature

dependence of friction.

2.1 The Debye-Waller exponent

In Ref. [1], the following expression for the Debye-Waller factor exponent is de-

rived:

𝑊 (𝑸) = 1

2𝑁

1𝐵𝑍\{0}∑︁
𝒌

3∑︁
𝜆=1

|𝑸 · 𝝐𝜆 (𝒌) |2
ℏ

2𝑚𝜔𝜆 (𝒌)
(2𝑛𝜆 (𝒌) + 1) , (2)

where:

◦ 𝑸 is a point in reciprocal space;

◦ 𝑁 is the number of atoms within the cubic crystal volume 𝑁 𝑎3 = (𝑁side 𝑎)3
(to which periodic boundary conditions are applied), or equivalently the

number of 𝒌 points within the first Brillouin zone;

◦ 1BZ \ {0} stands for the sampling grid of the first Brillouin zone, without

the origin (see further below);

◦ 𝜆 is an index spanning the three phonon polarization branches of the cubic

crystal;

◦ 𝝐𝜆 (𝒌) is the polarization vector for the 𝜆 branch evaluated at the 𝒌 point;

◦ 𝜔𝜆 (𝒌) is the corresponding angular frequency;
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Figure 2: Phonon dispersion of the lowest transverse branch

(𝜆 = 1) of the simple-cubic crystal, along three different di-

rections in reciprocal space. Note the acoustic behavior (fre-

quency vanishing linearly for |𝒌 | → 0), with different slopes

(speeds of sound) depending on the k-space direction.

◦ 𝑛𝜆 (𝒌) is the average equilibrium number of quanta (phonons) of the 𝜆, 𝒌

oscillator at temperature 𝑇 .

In Equation (2) the phonon frequency 𝜔𝜆 (𝒌) is at the denominator. As a result,

any term with vanishing frequency diverges. In practice only the 3 𝒌 = 0 modes

have vanishing frequency, and therefore they are omitted from the summation.

However, the small-𝒌 terms have a very small denominator, leading to them dom-

inating the Debye Waller exponent. This issue will make it rather the sampling

of the small-𝒌 region rather delicate.

The number of phonons 𝑛𝜆 (𝒌) carries all the temperature dependence of

Eq. (2), and it is evaluated according to Bose-Einstein statistics (3):

𝑛𝜆 (𝒌) =
1

exp
(︂
ℏ𝜔𝜆 (𝒌)
𝑘𝐵𝑇

)︂
− 1

. (3)

Now, consider the phonon occupation factor, Equation (2), in the limit 𝑇 →
0, Fig. 3:

lim
𝑇→0

1

exp
(︂
ℏ𝜔𝜆 (𝒌)
𝑘𝐵𝑇

)︂
− 1

= 0 . (4)

The number of phonons vanishes exponentially rapidly for 𝑇 → 0 and, as a

result, the phonon factor (2𝑛𝜆 (𝒌) + 1) → 1 in 𝐶 (𝑇) goes to unity, as temperature
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Figure 3: The generic trend of the phonon occupation factor

as a function of 𝑥 = (𝑘𝐵𝑇)/(ℏ𝜔).

decreases to zero, indicating that atoms oscillate even at 𝑇 = 0. This zero-point

effect makes 𝑊 (𝑇) nonzero and thus the Debye-Waller different from unity even

at 𝑇 = 0. Clearly this small effect was entirely neglected when the Debye-Waller

factor was approximated to unity [1].

At high temperature 𝑇 ≫ ℏ𝜔𝜆 (𝑇)/𝑘𝐵, the phonon occupation factor becomes

approximately linearly dependent on 𝑇 , reflecting the classical limit of Bose–

Einstein statistics:

2𝑛𝜆 (𝒌) + 1 ≃ 2𝑘𝐵
ℏ𝜔𝜆 (𝒌)

𝑇 for 𝑇 → +∞ , (5)

At high temperatures, the thermal energy 𝑘𝐵𝑇 is much larger than the spacing

between the quantized energy levels of the harmonic oscillator. As a result,

these levels can be regarded as quasi-continuous, and the oscillator crosses over

from quantum to classical behavior. If the phonon occupation number becomes

𝑛𝜆 (𝒌) ≃ 𝑘𝐵𝑇/(ℏ𝜔𝜆 (𝒌)), then the energy of that harmonic oscillator becomes

≃ 𝑘𝐵𝑇 , which coincides with result of the energy equipartition theorem. Finally,

we recognize the entire product ℏ
2𝑚𝜔𝜆 (𝒌) (2𝑛𝜆 (𝒌) +1) in Eq. (2) as the mean square

oscillatory amplitude of a one-dimensional harmonic oscillator in the 𝑛𝜆 (𝒌)-th
excited state. To sum up, Equation (2) shows a sum of the mean amplitudes

of oscillators for each polarization weighted by the projection between the wave-

vector 𝑸 and all the directions of oscillation.
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Figure 4: Phonon occupation factors for the simple-cubic

crystal with the dynamical parameters defined in Table 1, as a

function of temperature, evaluated at the 𝒌 = (1, 2, 3) 1
𝑎
point,

where the three phonon frequencies 𝜔1(𝒌) = 1.80 (𝐾/𝑚)1/2,
𝜔2(𝒌) = 2.24 (𝐾/𝑚)1/2 𝜔3(𝒌) = 2.48 (𝐾/𝑚)1/2. The nonzero

intercept is the same, while the high-temperature approxi-

mately linear increase occurs with different slopes, each in-

versely proportional to its mode frequency.

3 Theory

3.1 Symmetry of the Debye–Waller exponent

In the present section we investigate the symmetry properties of𝑊 (𝑸). As shown
in Fig. 5, the numerical evaluation of 𝑊 (𝑸) shows that its value only depends on

|𝑸 |, indicating full rotational symmetry. Figure 5 also shows an exactly quadratic

dependence on |𝑸 |.
However, at face value this rotational symmetry and quadratic dependence

are far from obvious. They require an analytical proof. The goal of the following

calculations is to factorize 𝑊 (𝑸) into two terms: 𝑊 (𝑸) = |𝑸 |2 · 𝐶 (𝑇). In this

way we evaluate 𝐶 (𝑇) for any 𝑇 and afterwards we bring its value inside the

numerical computation of the friction, at no extra computational cost within

the integration of Eq. (1). Without these symmetries, it would be necessary

to repeatedly evaluate the entire 𝑊 (𝑸) for every 𝑸 in the grid over which the

integral of Eq. (1) is computed.

The key is to split the entire summation into sets and derive the symmetry
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Figure 5: Debye–Waller exponent evaluated at the tempera-

ture 𝑇 = 0.16 𝜃𝐷 , as a function of |Q|2at, computed on a cubic

mesh of 1000 𝒌-points within the first Brillouin zone. The re-

sulting prefactor 𝐶 (𝑇) ≃ 1.73 × 10−5 𝑎2. The upper panel

highlights the negligibly tiny deviations of the numerical de-

termination from this value, further confirming the Q-isotropy

of 𝑊 (Q).

from each of these. First of all, it is useful to simplify the notation:

𝑊 (𝑸) = 1

2𝑁

1𝐵𝑍\{0}∑︁
𝒌

3∑︁
𝜆=1

|𝑸 · 𝝐𝜆 (𝒌) |2𝑌𝜆 (𝒌) , (6)

𝑌𝜆 (𝒌, 𝑇) = ℏ

2𝑚𝜔𝜆 (𝒌)
(2𝑛𝜆 (𝒌, 𝑇) + 1) . (7)

Another change in notation, useful for clearness, is to move the subscript up like

this 𝝐𝜆 (𝒌) → 𝝐𝜆 (𝒌) to gain space for the component index 𝝐𝜆
𝑖
(𝒌); from now on,

the two notations will be equivalent.

To start, consider a single 𝒌 within the first Brillouin zone, compute the
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Figure 6: Simple cubic lattice, with one of the main diagonals

highlighted, for example (1, 1, 1).

square and the sum on 𝜆 like in Equation (8),∑︁
𝜆

(𝑄𝑥𝜖𝜆𝑥 +𝑄𝑦𝜖
𝜆
𝑦 +𝑄𝑧𝜖

𝜆
𝑧 )2𝑌𝜆 =

= 𝑄2
𝑥 (𝜖1

2

𝑥 𝑌
1 + 𝜖22𝑥 𝑌2 + 𝜖32𝑥 𝑌3)+

+𝑄2
𝑦 (𝜖1

2

𝑦 𝑌
1 + 𝜖22𝑦 𝑌2 + 𝜖32𝑦 𝑌3)+

+𝑄2
𝑧 (𝜖1

2

𝑧 𝑌
1 + 𝜖22𝑧 𝑌2 + 𝜖32𝑧 𝑌3)+

+2𝑄𝑥𝑄𝑦 (𝜖1𝑥 𝜖1𝑦𝑌1 + 𝜖2𝑥 𝜖2𝑦𝑌2 + 𝜖3𝑥 𝜖3𝑦𝑌3)+
+2𝑄𝑥𝑄𝑧 (𝜖1𝑥 𝜖1𝑧𝑌1 + 𝜖2𝑥 𝜖2𝑧𝑌2 + 𝜖3𝑥 𝜖3𝑧𝑌3)+
+2𝑄𝑦𝑄𝑧 (𝜖1𝑦 𝜖1𝑧𝑌1 + 𝜖2𝑦 𝜖2𝑧𝑌2 + 𝜖3𝑦 𝜖3𝑧𝑌3) .

(8)

The first three lines after the equal sign are quadratic in the components and

the last three have mixed terms. With the aim of the proof in mind it we look

for a way to make the brackets that multiply the quadratic term equal and to

make those multiplying the mixed ones vanish; in this way, the brackets can be

factored out and multiplied by the squared norm of 𝑸, obtaining 𝐶 (𝑇) · |𝑸 |2. The
idea is to sum other addends to this above, to cancel out or factorize the terms.

Focusing on the first three rows, it makes sense to look for other two addends in

such a way that 𝑌𝜆 keeps the same value and the sum of 𝜖𝜆
2

𝑖
is equal to one, like

the norm of the polarization vector 𝝐 . Now, it is useful to analyze the symmetries

of the crystal to deduce some simplifications.

3.1.1 Symmetries of the crystal

The crystal lattice considered has a simple-cubic structure and so the reciprocal

lattice, see Figure 6. Permuting the components of the position vector 𝒙 of each

atom in the same way, one obtains the same crystal; so, rotations around on

of the main diagonal, see Figure 6, and reflections, with respect to the three

planes passing through the main diagonal and one of the three axis 𝑥,𝑦,𝑧, are

all symmetries. These symmetries are induced even on the reciprocal lattice.
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Consider a set of three 𝒌, obtained by permuting their components so that no

components remain in the same position, or in other words, obtained by rotating

one of them around the reciprocal lattice main diagonal, (1, 1, 1) in Miller indexes,

by 120◦, namely,

𝒌1 = (𝑘1, 𝑘2, 𝑘3)
𝒌2 = (𝑘2, 𝑘3, 𝑘1)
𝒌3 = (𝑘3, 𝑘1, 𝑘2) ,

(9)

it is possible to use the symmetry of the lattice, Appendix 5, to assert

𝑌𝜆 (𝒌1) = 𝑌𝜆 (𝒌2) = 𝑌𝜆 (𝒌3) , (10)

and

𝝐𝜆 (𝒌1) = (𝜖1, 𝜖2, 𝜖3)
𝝐𝜆 (𝒌2) = ±(𝜖2, 𝜖3, 𝜖1)
𝝐𝜆 (𝒌3) = ±(𝜖3, 𝜖1, 𝜖2) .

(11)

Equation (10) is justified by the fact that all the 𝒌 dependence is within the

frequency 𝜔𝜆 (𝒌), which is not a vector, meaning that does not rotate with the

crystal if one applies the rotational symmetry, so it sees these three points like

they were the same, due to their symmetry equivalence. Similarly, in (11) the

components of the polarization vectors remain the same after the rotation, but

in this case the vector rotates with the lattice, and, since the rotation is the

same around the (1, 1, 1) diagonal, the effect is the same permutation of com-

ponents. Actually, each polarization vector is obtained as an eigenvector of the

dynamical matrix and, like any eigenvector, is defined only up to an overall sign.

Consequently, although the effect of the rotation is merely a permutation, solv-

ing the eigenvalue problem for the rotated dynamical matrix may yield the same

polarization vector but with the opposite global sign.

This argument seems to be inconsistent if one considers the points on the

(1, 1, 1) diagonal, because it is impossible to obtain permuted polarization vectors

starting from exactly the same 𝒌 vector. In fact, polarization vectors are obtained

as eigenvectors of the dynamical matrix evaluated for a specific 𝒌, therefore, the

same matrix cannot have different eigenvectors. But in the case of a dynamical

matrix evaluated on a 𝒌 on the (1, 1, 1) diagonal, the three eigenvectors have the
following proprieties:

1. one of the eigenvectors lies on the same direction of 𝒌, like always actually,

but in this case also on the main diagonal, which means that remains the

same after an arbitrary rotation around that axis;

11



2. the two eigenvectors, which are not lying on the main diagonal, have the

same eigenvalue, therefore, they are defined up to a phase, and one can

rotate them by hand after the rotation of the lattice.

This shows that that the arguments is valid also for those 𝒌 vectors.

3.1.2 Simplifying the quadratic terms

For now, all 𝒌 vectors lying on the main diagonal are ignored. Consider the

sum over the set consisting of the three, aforementioned in (9), 𝒌 vectors and

extract from those the terms which are carrying the quadratic x-component of

the 𝑸 vector. It is always possible to divide by three the total number of points

𝑁 inside the cubic first Brillouin zone, 𝑁 = 𝑁3
side

, where 𝑁side is the number of

𝒌 on a side of the cube, minus the ignored ones in the main diagonal, which

are 𝑁side. In fact, 𝑁3
side

− 𝑁side is a multiple of three for every 𝑁side ≥ 2 as

𝑁3
side

−𝑁side = 𝑁side(𝑁2
side

−1) = (𝑁side−1)𝑁side(𝑁side+1), and one of the three must

be a multiple of three. The argument is also valid for the remaining components.∑︁
𝒌=𝒌1,𝒌2,𝒌3

∑︁
𝜆

(𝑄𝑥𝜖𝜆𝑥 (𝒌) +𝑄𝑦𝜖
𝜆
𝑦 (𝒌) +𝑄𝑧𝜖

𝜆
𝑧 (𝒌))2𝑌𝜆 (𝒌)

→
∑︁

𝒌=𝒌1,𝒌2,𝒌3

𝑄2
𝑥 (𝜖 (𝒌)1

2

𝑥 𝑌 (𝒌)1 + 𝜖 (𝒌)2
2

𝑥 𝑌 (𝒌)2 + 𝜖 (𝒌)3
2

𝑥 𝑌 (𝒌)3)
(12)

⎛⎜⎜⎝
𝜖𝜆𝑥 (𝒌1) 𝜖𝜆𝑥 (𝒌2) 𝜖𝜆𝑥 (𝒌3)
𝜖𝜆𝑦 (𝒌1) 𝜖𝜆𝑦 (𝒌2) 𝜖𝜆𝑦 (𝒌3)
𝜖𝜆𝑧 (𝒌1) 𝜖𝜆𝑧 (𝒌2) 𝜖𝜆𝑧 (𝒌3)

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝜖𝜆1 𝜖𝜆2 𝜖𝜆3
𝜖𝜆2 𝜖𝜆3 𝜖𝜆1
𝜖𝜆3 𝜖𝜆1 𝜖𝜆2

⎞⎟⎟⎠ . (13)

In Equation (13) the three polarization vectors are arranged into a matrix, in

which the sign of the components are ignored, yielding a 3×3 matrix, whose

columns are normalized to 1. By substituting the values of each components,

using Equation (11), the rows also consist of vectors normalized to 1, because

the matrix is symmetric. This is true even considering the correct sign of each

component. This allows us to factorize the brackets multiplied by 𝑌𝜆 (𝒌), which
we recognize as the norm of the polarization vector, and we write the expression

12



in Equation (12) in this way:∑︁
𝒌=𝒌1,𝒌2,𝒌3

𝑄2
𝑥 (𝜖 (𝒌)1

2

𝑥 𝑌 (𝒌)1 + 𝜖 (𝒌)2
2

𝑥 𝑌 (𝒌)2 + 𝜖 (𝒌)3
2

𝑥 𝑌 (𝒌)3) =

= 𝑄2
𝑥 [(𝜖1𝑥 (𝒌1)2 + 𝜖1𝑥 (𝒌2)2 + 𝜖1𝑥 (𝒌3)2)𝑌1+
+(𝜖2𝑥 (𝒌1)2 + 𝜖2𝑥 (𝒌2)2 + 𝜖2𝑥 (𝒌3)2)𝑌2+

+(𝜖3𝑥 (𝒌1)2 + 𝜖3𝑥 (𝒌2)2 + 𝜖3𝑥 (𝒌3)2)𝑌3] =

= 𝑄2
𝑥 [(𝜖1

2

1 + 𝜖122 + 𝜖12𝑥 )𝑌1+

+(𝜖222 + 𝜖223 + 𝜖221 )𝑌2+

+(𝜖323 + 𝜖321 + 𝜖322 )𝑌3] =
= 𝑄2

𝑥 (𝑌1 + 𝑌2 + 𝑌3) .

(14)

Replacing the index 𝑥 by 𝑦 or 𝑧 leaves the argument unchanged. Therefore,

the first three lines of Equation (8), after a summation on the vectors shown in

Equation (9), we obtain Equation (15).

𝑄2
𝑥 (𝑌1 + 𝑌2 + 𝑌3) +𝑄2

𝑦 (𝑌1 + 𝑌2 + 𝑌3) +𝑄2
𝑧 (𝑌1 + 𝑌2 + 𝑌3) =

= |𝑄 |2(𝑌1 + 𝑌2 + 𝑌3) =

= |𝑸 |2
∑︁
𝜆

𝑌 (𝒌)𝜆 = 1

3
|𝑸 |2

∑︁
𝒌=𝒌1,𝒌2,𝒌3

∑︁
𝜆

𝑌 (𝒌)𝜆 .
(15)

The last step is carried out by considering Equation (10), and it is useful

for coding purposes and for the approximation in Section 3.2. Now, sum over all

the sets of three rotated 𝒌 it is possible to make, which are a number 𝑀 equal to
𝑁3
side

−𝑁side

3 . These sets are disjoint, we can label them using an index, and we can

recover entirety of the first Brillouin zone, excluding the diagonal, by summing

over that index, namely,

𝑀∑︁
𝑗=1

1

3
|𝑸 |2

∑︁
𝒌 𝑗=𝒌

𝑗

1,𝒌
𝑗

2,𝒌
𝑗

3

∑︁
𝜆

𝑌 (𝒌)𝜆 = 1

3
|𝑸 |2

𝑀∑︁
𝑗=1

∑︁
𝒌 𝑗=𝒌

𝑗

1,𝒌
𝑗

2,𝒌
𝑗

3

∑︁
𝜆

𝑌 (𝒌)𝜆 =

=
1

3
|𝑸 |2

1𝐵𝑍\{(𝑘,𝑘,𝑘)}∑︁
𝒌

∑︁
𝜆

𝑌 (𝒌)𝜆 =
1

3
|𝑸 |2 · 𝐶′(𝑇) ,

(16)

where {(𝑘, 𝑘, 𝑘)} stands for all the points on the main diagonal (1, 1, 1). This is

similar to the final form for 𝑊 (𝑸), since all temperature dependence is collected

in a separate term 𝐶′(𝑇) that is multiplied by the squared norm of 𝑸. However,

some steps are still missing. First of all, the terms on the diagonal still need to

be summed, and then it remains to show how the cross terms cancel out.

13



3.1.3 Summing the 𝒌 on diagonal

The statement we need to add the diagonal elements is the following:∑︁
𝜆

|𝑸 · 𝝐𝜆 (𝒌) |2𝑌𝜆 (𝒌) =
1

3
|𝑸 |2

∑︁
𝜆

𝑌𝜆 (𝒌) , (17)

which can be derived by summing three times over the same 𝒌, which can be seen

as the permutation of itself:

3
∑︁
𝜆

|𝑸 · 𝝐𝜆 (𝒌) |2𝑌𝜆 (𝒌) =
1

3
|𝑸 |2

∑︁
𝒌=𝒌1,𝒌2,𝒌3

∑︁
𝜆

𝑌𝜆 (𝒌) =
1

3
|𝑸 |2 · 3

∑︁
𝜆

𝑌𝜆 (𝒌)

⇒
∑︁
𝜆

|𝑸 · 𝝐𝜆 (𝒌) |2𝑌𝜆 (𝒌) =
1

3
|𝑸 |2

∑︁
𝜆

𝑌𝜆 (𝒌) =
1

3
|𝑸 |2(2𝑌 + 𝑌3) ,

(18)

where 𝑌1 = 𝑌2 = 𝑌 , 𝒌1 = 𝒌2 = 𝒌3 and conditions in Equation (10) and (11)

have been used. In this case, Equation (10) is true, because 𝒌 is always the

same. However, Equation (11) seems to be problematic, because one cannot now

consider 𝝐 as permuted. Consider again Equation (14), in this case becomes:

𝑄2
𝑥 [(𝜖1𝑥 (𝒌1)2 + 𝜖1𝑥 (𝒌2)2 + 𝜖1𝑥 (𝒌3)2)𝑌1+
+(𝜖2𝑥 (𝒌1)2 + 𝜖2𝑥 (𝒌2)2 + 𝜖2𝑥 (𝒌3)2)𝑌2+

+(𝜖3𝑥 (𝒌1)2 + 𝜖3𝑥 (𝒌2)2 + 𝜖3𝑥 (𝒌3)2)𝑌3] =
= 𝑄2

𝑥 [(3𝜖1𝑥 (𝒌)2 + 3𝜖2𝑥 (𝒌)2)𝑌 + 𝑌3] ,

(19)

where 𝜖3𝑥 (𝒌)2 + 𝜖3𝑥 (𝒌)2 + 𝜖3𝑥 (𝒌)2 = 1, because 𝝐3(𝒌) has equal components. Now,

must be 3𝜖1𝑥 (𝒌)2 + 3𝜖2𝑥 (𝒌)2 = 2 to obtain Equation (18). In order to prove that,

it us useful to prove another statement:

𝜖1
2

𝑥 + 𝜖12𝑥,𝜃 + 𝜖1
2

𝑥,𝜙 + 𝜖2
2

𝑥 + 𝜖22𝑥,𝜃 + 𝜖2
2

𝑥,𝜙 = 2 , (20)

where 𝜖1
𝑥,𝜃

is the x component of a vector obtained by rotating by an angle 𝜃

𝝐1(𝒌) around the usual direction (1,1,1), etc. It makes sense, since:

3𝜖1
2

𝑥 + 3𝜖2
2

𝑥 = 𝜖1
2

𝑥 + 𝜖12𝑥,0 + 𝜖
12

𝑥,0 + 𝜖
22
𝑥 + 𝜖22𝑥,0 + 𝜖

22

𝑥,0 =

= 𝜖1
2

𝑥 + 𝜖12
𝑥, 2𝜋3

+ 𝜖12
𝑥, 4𝜋3

+ 𝜖22𝑥 + 𝜖22
𝑥, 2𝜋3

+ 𝜖22
𝑥, 4𝜋3

=

= 𝜖1
2

𝑥 + 𝜖12𝑦 + 𝜖12𝑧 + 𝜖22𝑥 + 𝜖22𝑦 + 𝜖22𝑧 = 2 .

(21)

Vectors 𝝐1 and 𝝐2 are orthogonal to each other and to 𝝐3 which lies in the

(1,1,1) direction. This means that 𝝐1 and 𝝐2 lie in the same plane orthogonal

to the direction (1,1,1) like their rotation at any angle. A change in coordinates

14



𝑥′

𝑦′

𝝐1

𝝐2

𝝐10.8

𝝐11.2

𝝐20.8

𝝐21.2

Figure 7: Unit vectors 𝝐1 on the 𝑦-axis and 𝝐2 on the 𝑥-axis,

and their counterclockwise rotations by two arbitrary angles

𝜃 and 𝜙 (angles in radians).

leads to Figure 7, which shows 𝝐1 and 𝝐2 and two of their rotation at two random

angles. With a symmetry argument, in particular, a swap of axis, the same we

used before for permutations in three dimensions, we assert:

𝜖
′12
𝑥 + 𝜖 ′12𝑥,𝜃 + 𝜖 ′12𝑥,𝜙 + 𝜖 ′22𝑥 + 𝜖 ′22𝑥,𝜃 + 𝜖 ′22𝑥,𝜙 = 𝜖

′12
𝑦 + 𝜖 ′12𝑦,𝜃 + 𝜖

′12
𝑦,𝜙 + 𝜖

′22
𝑦 + 𝜖 ′22𝑦,𝜃 + 𝜖

′22
𝑦,𝜙 , (22)

which leads to:

2(𝜖 ′12𝑥 + 𝜖 ′12𝑥,𝜃 + 𝜖 ′12𝑥,𝜙 + 𝜖 ′22𝑥 + 𝜖 ′22𝑥,𝜃 + 𝜖 ′22𝑥,𝜙 ) =

= 𝜖1
2

𝑥 + 𝜖 ′12𝑥,𝜃 + 𝜖 ′12𝑥,𝜙 + 𝜖 ′22𝑥 + 𝜖 ′22𝑥,𝜃 + 𝜖 ′22𝑥,𝜙 + 𝜖 ′12𝑦 + 𝜖 ′12𝑦,𝜃 + 𝜖
′12
𝑦,𝜙 + 𝜖

′22
𝑦 + 𝜖 ′22𝑦,𝜃 + 𝜖

′22
𝑦,𝜙 = 6 ,

⇒ 𝜖
′12
𝑥 + 𝜖 ′12𝑥,𝜃 + 𝜖 ′12𝑥,𝜙 + 𝜖 ′22𝑥 + 𝜖 ′22𝑥,𝜃 + 𝜖 ′22𝑥,𝜙 = 3 .

(23)

This can be translated in three dimensions, i.e. in the previous coordinate system,

obtaining:

𝜖1
2

𝑥 + 𝜖12𝑥,𝜃 + 𝜖1
2

𝑥,𝜙 + 𝜖2
2

𝑥 + 𝜖22𝑥,𝜃 + 𝜖2
2

𝑥,𝜙 = 𝜖
12
𝑦 + 𝜖12𝑦,𝜃 + 𝜖1

2

𝑦,𝜙 + 𝜖2
2

𝑦 + 𝜖22𝑦,𝜃 + 𝜖2
2

𝑦,𝜙 =

= 𝜖1
2

𝑧 + 𝜖12𝑧,𝜃 + 𝜖1
2

𝑧,𝜙 + 𝜖2
2

𝑧 + 𝜖22𝑧,𝜃 + 𝜖2
2

𝑧,𝜙 ,

3(𝜖12𝑥 + 𝜖12𝑥,𝜃 + 𝜖1
2

𝑥,𝜙 + 𝜖2
2

𝑥 + 𝜖22𝑥,𝜃 + 𝜖2
2

𝑥,𝜙) = 6 ,

⇒ 𝜖1
2

𝑥 + 𝜖12𝑥,𝜃 + 𝜖1
2

𝑥,𝜙 + 𝜖2
2

𝑥 + 𝜖22𝑥,𝜃 + 𝜖2
2

𝑥,𝜙 = 2 .

(24)

Exactly what we need to add diagonal elements in Equation 16.

To obtain more precisely Equation (24), consider a vector 𝒗 on the plane

orthogonal to (1, 1, 1). Rotate it by 90◦ around (1, 1, 1), to get 𝒘 ⊥ 𝒗.

𝒗 =
⎛⎜⎜⎝
𝑣𝑥

𝑣𝑦

𝑣𝑧

⎞⎟⎟⎠ → 𝒘 =
1
√
3

⎛⎜⎜⎝
𝑣𝑧 − 𝑣𝑦
𝑣𝑥 − 𝑣𝑧
𝑣𝑦 − 𝑣𝑥

⎞⎟⎟⎠ . (25)

15



Then, considering 𝑣𝑥 + 𝑣𝑦 + 𝑣𝑧 = 0 and 𝑤𝑥 + 𝑤𝑦 + 𝑤𝑧 = 0, we just sum the square

components and obtain:

𝑣2𝑥 + 𝑤2
𝑥 = 𝑣

2
𝑦 + 𝑤2

𝑦 = 𝑣
2
𝑧 + 𝑤2

𝑧 . (26)

3.1.4 Canceling cross products out

The cross products are not eliminated by merely summing a set of three rotated

𝒌 vectors, but require also summing over the 𝒌 vectors obtained by flipping the

sign of one or more components, i.e. those reflected across the 𝑥, 𝑦, and 𝑧 axes:

𝒌11 = (𝑘1, 𝑘2, 𝑘3)
𝒌21 = (−𝑘1, 𝑘2, 𝑘3)
𝒌31 = (𝑘1,−𝑘2, 𝑘3)
𝒌41 = (𝑘1, 𝑘2,−𝑘3) ,

(27)

where the first index stands for the reflection and the second stands for the

permutation shown in Equation (9). In order to simplify the notation, we denote

𝜖𝜆𝜇 (𝒌𝑖 𝑗 ) by 𝜇𝑖 𝑗 , because the following proof is the same for any 𝜆; for example

𝜖1𝑥 (𝒌12) becomes 𝑥12. The matrices below show the matches between a 𝒌 and the

cross product term related to 𝑄𝑥𝑄𝑦 for a specific 𝜆, Equation (8), which is not

expressed because irrelevant:

⎛⎜⎜⎜⎜⎝
𝒌11 𝒌12 𝒌13
𝒌21 𝒌22 𝒌23
𝒌31 𝒌32 𝒌33
𝒌41 𝒌42 𝒌43

⎞⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎝
𝑥11𝑦11 𝑥12𝑦12 𝑥13𝑦13

𝑥21𝑦21 𝑥22𝑦22 𝑥23𝑦23

𝑥31𝑦31 𝑥32𝑦32 𝑥33𝑦33

𝑥41𝑦41 𝑥42𝑦42 𝑥43𝑦43

⎞⎟⎟⎟⎟⎠
. (28)

Computing the sum
∑︁3
𝑖=1

∑︁4
𝑗=1 𝑥 𝑗 ,𝑖𝑦 𝑗 ,𝑖 means summing over a single column and

then sum the result for all the others. Using polarization vectors symmetries,

Appendix 5:

𝑥11 = 𝑥21 𝑦11 = −𝑦21 𝑥31 = 𝑥41 𝑦31 = −𝑦41
𝑥12 = 𝑥32 𝑦12 = −𝑦32 𝑥22 = 𝑥42 𝑦22 = −𝑦44

𝑥13 = −𝑥2,3 𝑦1,3 = 𝑦23 𝑥33 = −𝑥43 𝑦33 = 𝑦43 .

(29)

We show that the summation over each column vanishes:

𝑥1𝑖𝑦1𝑖 + 𝑥2𝑖𝑦2𝑖 + 𝑥3𝑖𝑦3𝑖 + 𝑥3𝑖𝑦3𝑖 = 0 ⇒
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑥 𝑗𝑖𝑦 𝑗𝑖 = 0 . (30)

The result is the same for every other cross product. When vectors are on one of

the diagonals of the cubic first Brillouin zone, we cannot sum over all permuta-

tions and reflections because some terms are equal, so we cannot sum the same
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term several times. In fact, in this case it is not even necessary to sum over all

permutations and reflections.

𝒌1 = (𝑘, 𝑘, 𝑘)
𝒌2 = (−𝑘, 𝑘, 𝑘)
𝒌3 = (𝑘,−𝑘, 𝑘)
𝒌4 = (𝑘, 𝑘,−𝑘) ,

(31)

The same argument used above leads to the canceling also of these products. The

last term which has neither permutations nor reflections is 𝒌 = (𝜋, 𝜋, 𝜋). However,
it is sufficient to count only his contribution to get the same simplification we

get with all the other sets. This implies that every term inside the brackets in

Equation (8), which multiply the cross product, vanishes and so do the last three

lines of Equation (8).

2𝑄𝑥𝑄𝑦 ((
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑥 𝑗𝑖𝑦 𝑗𝑖)1𝑌1 + (
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑥 𝑗𝑖𝑦 𝑗𝑖)2𝑌2 + (
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑥 𝑗𝑖𝑦 𝑗𝑖)3𝑌3)+

+2𝑄𝑥𝑄𝑧 ((
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑥 𝑗𝑖𝑧 𝑗𝑖)1𝑌1 + (
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑥 𝑗𝑖𝑧 𝑗𝑖)2𝑌2 + (
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑥 𝑗𝑖𝑧 𝑗𝑖)3𝑌3)+

+2𝑄𝑦𝑄𝑧 ((
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑦 𝑗𝑖𝑧 𝑗𝑖)1𝑌1 + (
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑦 𝑗𝑖𝑧 𝑗𝑖)2𝑌2 + (
3∑︁
𝑖=1

4∑︁
𝑗=1

𝑦 𝑗𝑖𝑧 𝑗𝑖)3𝑌3) = 0 .

(32)

The desired form is achieved:

𝑊 (𝑸) = 𝐶 (𝑇) |𝑸 |2 , (33)

where 𝐶 (𝑇) is

𝐶 (𝑇) = 1

6𝑁

1BZ\{0}∑︁
𝒌

3∑︁
𝜆=1

ℏ

2𝑚𝜔𝜆 (𝒌)
(2𝑛𝜆 (𝒌, 𝑇) + 1) . (34)

Equations (33) and (34) are the main theoretical result of the present thesis.

3.2 A Debye-like approximation

Using a Debye-like approach, we write an approximate but simpler expression for

the 𝐶 (𝑇) factor:

1BZ\{0}∑︁
𝒌

3∑︁
𝜆=1

→
∫ 𝑘𝐷

0
𝑔(𝑘)𝑑𝑘 , 𝑔(𝑘) = 3𝑁𝑎3

2𝜋2
𝑘2 , 𝑘𝐷 =

(6𝜋2) 13
𝑎

. (35)
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Therefore:

𝐶𝐷 (𝑇) =
1

6𝑁

∫ 𝑘𝐷

0

ℏ

2𝑚𝑣𝑠𝑘

(︄
2

exp ℏ𝑣𝑠𝑘

𝑘𝐵𝑇
− 1

+ 1

)︄
𝑔(𝑘)𝑑𝑘 =

=
1

2𝑁

∫ 𝑘𝐷

0

ℏ

2𝑚𝑣𝑠𝑘

(︄
2

exp ℏ𝑣𝑠𝑘

𝑘𝐵𝑇
− 1

+ 1

)︄
𝑁𝑎3

2𝜋2
𝑘2𝑑𝑘 ,

𝐶𝐷 (𝑇) =
ℏ𝑎3

8𝜋2𝑚𝑣𝑠

∫ 𝑘𝐷

0

(︄
2

exp ℏ𝑣𝑠𝑘

𝑘𝐵𝑇
− 1

+ 1

)︄
𝑘𝑑𝑘 . (36)

After a change of variables, 𝑥 = ℏ𝑣𝑠𝑘/(𝑘𝐵𝑇), we can reformulate Eq. (36) as:

𝐶𝐷 (𝑇) =
𝑎3(𝑘𝐵𝑇)2

8𝜋2𝑚ℏ𝑣2𝑠

∫ 𝜃𝐷/𝑇

0

(︃
2

exp 𝑥 − 1
+ 1

)︃
𝑥𝑑𝑥 . (37)

By taking the low-temperature limit and using
∫ ∞
0

2𝑥/(𝑒𝑥−1)𝑑𝑥 = 𝜋2/3, we obtain
the following expression:

𝐶𝐷 (𝑇) ≃
ℏ𝑎3

16 𝜋2𝑚𝑣𝑠
𝑘2𝐷 + (𝑘𝐵𝑇)2

𝑎3

24𝑚ℏ𝑣3𝑠
. (38)

On the other hand, for 𝑇 ≫ 𝜃𝐷 one can expand the exponential in Eq. (37) for

small 𝑥, carry out the integration, and obtain the asymptotic high-temperature

expression:

𝐶𝐷 (𝑇) ≃
𝑎3𝑘𝐷

4𝜋2𝑚𝑣2𝑠
𝑘𝐵𝑇 , (39)

where ℏ cancels out, indicating a classic (i.e. non quantum) behavior.

Based on the results illustrated above, in practice the numerical evaluation of

𝑊 (𝑸), can be divided into two parts. The first part consists of trivially evaluating

the squared norm of Q, while the second involves the computation of 𝐶 (𝑇), either
based on the exact numeric method discussed above or with some approximate

model formula, as discussed in the next Section.

3.3 Useful symmetries for the evaluation of 𝐶 (𝑇)
To accelerate the calculation of the summation, one can exploit the symmetry

of 𝑌𝜆 (𝒌), both under reflections and translations, allowing the summation to be

performed over only a portion of the first Brillouin zone and then multiplying the

result by an appropriate factor. In particular, the symmetry under reflections and

permutations reduces the first Brillouin zone to the subset of points that yield

independent values of 𝑌 . In practice, the symmetry with respect to reflections

18



II I

III IV

Figure 8: The square is a 2D representation of the first Bril-

louin zone. The top and right edges of the square are high-

lighted because they lie within the 1BZ. The red triangle indi-

cates the region over which I am summing. As can be clearly

seen in this simplified diagram, all points strictly inside the

red triangle correspond to 7 other distinct points in the 1BZ,

for a total of 8 equivalent points. In contrast, points on the

diagonal and on the outer edges correspond to 3 other points,

for a total of 4 equivalent points. Finally, the point at the

center corresponds only to itself.

allows us to perform the k-points summation only over the first octant of the

1BZ. Additionally, the symmetry under rotations permits the summation to be

carried out only over the piece of the first octant in which no triplet (𝑘1, 𝑘2, 𝑘3)
is a permutation of another. After performing this summation, the multiplicative

factor to obtain the correct value of 𝐶 (𝑇) is 8, corresponding to the reduction

to the first octant, and 6, because there are 3! triplets obtainable by permuting

the same three components, corresponding to the further reduction within this

region, 48 in total. The main difficulty is to exclude from multiplication with

48 the boundary points inside the symmetric zone considered, in Figure 8 there

is a simplified representation of what this means. The three-dimensional case is

obviously more intricate, for that see Appendix B.

3.4 Size scaling for the 𝐶 (𝑇) coefficient

We are actually interested in the 𝑁side → +∞ limit for the Debye-Waller factors,

and thus for 𝐶 (𝑇). A direct computation of this condition is of course impossible.

However, we can obtain an estimation of this quantity by a standard finite-size

extrapolation, also called finite-size scaling. For a given temperature 𝑇 , we plot

the 𝐶 (𝑇) as a function of the inverse of 𝑁side. This illustrates the size scaling, and

allows us to extract the desired infinite-size value. Figure 9 reports the finite-size
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Figure 9: Size scaling of 𝐶 (𝑇) as a function of Δ𝑘 ∝ 𝑁−1
side

,

at temperature 𝑇 = 1 𝜃𝐷 . Black and blue points: numerically

computed values of 𝐶 (𝑇). Lines: linear fits based uniquely

on the 3 highlighted (red or brown) points. The two scalings

(even/odd 𝑁side appear approximately linear. This makes it

possible to use a simple linear regression to extract the lim-

iting 𝐶 (𝑇) value for Δ𝑘 → 0 with good accuracy. As can be

seen the two different linear regressions lead to very similar

intercepts at Δ𝑘 = 0. Eventually we take the average between

those two intercepts as our best estimate for the thermody-

namic limit of 𝐶 (𝑇). Inset: detail of the points used for the

linear fits.

scaling of 𝐶 (𝑇) as a function of Δ𝑘 ∝ 𝑁−1
side

: it clearly shows an approximately

linear scaling of 𝐶 (𝑇). First, we need to explain why Fig. 9 shows two separate

trends instead of just one.

Figure 10 sketches a one-dimensional explanation of the observed even-odd

effect. Recall that every addendum in the summation in Eq. (34) contributes

proportionally to 𝜔𝜆 (k)−1, and that 𝜔𝜆 (k) ∝ |𝒌 | for small |𝒌 |, see the acoustic

behavior of the phonon dispersion reported in Fig. 2. As a result, the 𝒌 closest to

the origin give the greatest contribution. Now consider two first Brillouin (1BZ)

zone grids: one built using odd 𝑁side and one using even 𝑁side, e.g. the successive

integer. In the even case the origin must be excluded from the summation, while

in the odd case the grid involves no 𝒌 at the origin. Consider the region around

the origin of for these two 1BZ grids, containing a similar number of 𝒌 points,

in such a way that we can establish a one-to-one correspondence between two 𝒌
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𝑎
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Figure 10: Two sampling grids for a one dimensional 1BZ,

with 𝑁side = 7 (top) and 𝑁side = 8 (bottom). Observe that

the 𝑘 points closest to the origin for the odd 𝑁side = 7 grid

are closer to the origin than the closest ones of the 𝑁side = 8

grid. The tics enumeration shows a one-to-one correspon-

dence between the points within the two 1BZ with different

𝑁side based on the closeness to the origin.

points around the origin. The pair of shortest 𝒌 points in the odd grid always

sit closer to the origin than the corresponding pair in the even grid. The formula

for the uniform 1BZ grid for the 𝑁side × 𝑁side × 𝑁side simple-cubic lattice is the

following:

𝒌 = 2𝜋(𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) , 𝑛𝛼 = −1
2
+ 1

𝑁side
, −1

2
+ 2

𝑁side
, ... ,

1

2
. (40)

If, for example, 𝑁side is even, then the shortest 𝒌 vector is:

|𝒌𝑖odd | = |2𝜋( 1

2(𝑁side − 1) , 0, 0) | =
𝜋

𝑁side − 1
<

2𝜋

𝑁side
= |2𝜋( 1

𝑁side
, 0, 0) | = |𝒌𝑖even |

⇒ 𝜔𝜆 (𝒌𝑖odd) < 𝜔𝜆 (𝒌
𝑖
even) ⇒ 𝜔𝜆 (𝒌𝑖odd)

−1 > 𝜔𝜆 (𝒌𝑖even)−1 ,
(41)

where the index 𝑖 stands for the one-to-one correspondence sketched in Fig. 10.

This shows that the addends from the odd-𝑁side grid give a larger, dominant

contribution near the origin: this is the term responsible for the even/odd splitting

in the 𝐶 (𝑇) scaling shown in Fig. 9.

Eventually, as illustrated in Fig. 9, to evaluate the infinite-size estimation of

𝐶 (𝑇) we carry out two separate linear fits of the numeric finite-size estimations

obtained by evaluating Eq. (34) with the following 𝑁side values: (481, 491, 501)
and (480, 490, 500). We then take the average between the two intercepts of those
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Figure 11: Temperature dependence of 𝐶 (𝑇). The reported

values reflect the infinite-size limit, obtained by linear ex-

trapolation plus averaging of the intercepts as discussed in

the text. Inset: detail of the low-temperature region. This

result applies to the simple-cubic lattice, with the mechanical

parameters 𝐾, 𝐾′ = 𝐾/2, 𝑚, and 𝑎 listed in Table 1.

two fits (which are extremely close anyway, a deviation ≤ 0.0002%) as our best

estimate for the 𝑁𝑠𝑖𝑧𝑒 → ∞ limit of 𝐶 (𝑇).

4 Results

With the recipe to evaluate the infinite-size limit of 𝐶 (𝑇) detailed in the previous

Section, we report the resulting overall dependence in Fig. 11. 𝐶 (𝑇) grows ap-

proximately linearly at temperatures exceeding the Debye temperature. At lower

temperature, 𝐶 (𝑇) rounds off quadratically to a constant as the Debye approxi-

mation predicts, Eq. (38). The order of magnitude of 𝐶 (𝑇)/𝑎2, in the 10−4 range,

reflects the numerical value of Planck’s constant ℏ = 1.09 × 10−4 𝑎2(𝐾𝑚)1/2 in

model units, for the parameters assumed in Table 1.

Figure 12 shows a comparison of the numerically exact 𝐶 (𝑇), Eq. (34) with
the approximate one obtained through the Debye model, Eq. (37): significant dif-

ferences are visible. These discrepancies are caused by an overall overestimation

of the vibrational frequencies that the Debye model does, see Fig. 13.

The deviations of the Debye model from the exact 𝐶 (𝑇) can be corrected by
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Figure 12: A comparison between the numerically exact 𝐶 (𝑇)
of Fig. 11 and Eq. (34) – blue dots, and the approximate De-

bye form 𝐶𝐷 (𝑇), Eq. (37) – red line, where speed of sound

has been tuned to match exactly the 𝐶 (𝑇) ∝ 𝑇2 raise at small

𝑇 . The Debye model underestimates the exact result by ap-

proximately 2.922 × 10−6 𝑎2 at 𝑇 = 0; this underestimation

increases with temperature, and at large 𝑇 ≫ 𝜃𝐷 , it deviates

approximately linearly with temperature. Inset: detail of the

discrepancy at low temperatures. Δ stands for the difference

𝐶 (0) − 𝐶𝐷 (0).

(i) introducing an additive term Δ that brings the 𝑇 = 0 value to the exact one:

Δ = 𝐶 (0) − 𝐶𝐷 (0) ≃ 2.922 × 10−6 𝑎2 , (42)

where 𝐶𝐷 (0) is provided by Eq. (38). Additionally, we add the contribution of

two ”Einstein”-type oscillators, as follows:

𝐶fit(𝑇) = 𝐶𝐷 (𝑇) + Δ + 𝑝1

exp 𝑝2
𝑇
− 1

+ 𝑝3

exp 𝑝4
𝑇
− 1

. (43)

By carrying out a least-square fit of 224 numerically determined values of 𝐶 (𝑇)
between 𝑇 = 0 𝜃𝐷 and 𝑇 = 5 𝜃𝐷 , we obtain 𝑝1 ≃ (−3.406× 10−6 ± 1.22× 10−7) 𝑎2,
𝑝2 ≃ (2328 ± 20.97) 𝐾𝑎2/𝑘𝐵, 𝑝3 ≃ (9.227 × 10−6 ± 1.30 × 10−7) 𝑎2 and 𝑝4 ≃
(828.9 ± 1.51) 𝐾𝑎2/𝑘𝐵 Figure 14 reports the result of this fit.
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Figure 13: A comparison between the Debye phonon disper-

sion and the exact frequencies reported separately for the 3

phonon branches 𝜆 = 1, 2, 3. The broad band of blue points

results from the vibrational frequencies being calculated along

numerous directions in k space, each associated with its pecu-

liar acoustic dispersion. For the transverse branches 𝜆 = 1, 2,

the Debye model systematically overestimates the exact fre-

quency across the majority of the 1BZ. The longitudinal

branch 𝜆 = 3 has a range of |k| where the exact frequency

is larger than the Debye model, but for large |k| near the 1BZ
edge, even the longitudinal phonon comes below the Debye

dispersion. On average, we can safely state that the Debye

approximation overestimates the vibrational frequencies.

Figure 15 reports the Debye-Waller factor exp(−𝑊 (Q)) over an extremely

broad 𝑸 range, far larger than the one employed for the friction computation [1],

which extends out to 𝑄max ≃ 72.5 𝑎−1. For temperatures lower than 𝜃𝐷 , in the

0 −𝑄max range the attenuation is smaller than 10%, therefore we expect a small

difference between the friction evaluated without and with the Debye-Waller fac-

tor. Even at 𝑇 = 0 a nonzero attenuation persists, due to the zero-point motion

effect, but, as shown in Fig. 15, this correction is quite small in the relevant Q-

region. In the previous work [1], the integration domain Ω for the integration

implied by the calculation of phonon friction, Eq. (1), was restricted to a finite

box, thanks to the rapid decay of the Fourier transform 𝑉 ( |𝑸 |) of the interaction
potential. However, different interaction potentials may lead to different large-|Q|
behavior of 𝑉 ( |𝑸 |), possibly requiring a larger integration domain. As illustrated

24



2.5×10-5

1×10-4

1.75×10-4

2.5×10-4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

C
(T
)/
a2

T/θD

C(T)
C(T)fit

-8×10-4

-4×10-4

0

4×10-4

         

C
fit
(T
)/
C
(T
) 
- 
1

Figure 14: The best-fit 𝐶fit, Eq. (43); top panel: its relative

deviation from the numerically exact 𝐶 (𝑇).
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Figure 15: The Debye-Waller factor 𝑒−𝑊 (𝑸) as a function of

the length of the wave vector 𝑸. The higher is temperature

the stronger is attenuation effect. The effect becomes relevant

for high magnitudes of 𝑸. Inset: the 𝑄 range is restricted to

the size of integration domain used for the friction evaluation.
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Figure 16: Comparison of the phonon friction evaluated

(i) with the Debye-Waller factors approximated with unity

(dot-dashed line); (ii) with the Debye-Waller factors appro-

priate for 𝑇 = 0 (solid line); and (iii) with the Debye-

Waller factors for an intermediate temperature 𝑇 = 1.62 𝜃𝐷
(dashed line). The Q-integrations are carried out over a mesh

of 4003 points, and the slider-crystal interaction potential

𝑉 (𝑟) = 𝜖 [( 𝜎2+𝑑2
𝑟2+𝑑2 )

6 − 2( 𝜎2+𝑑2
𝑟2+𝑑2 )

3]. As expected, accounting for

a Debye-Waller factor smaller than unity primarily leads to a

decrease in friction, best visible at the peak (inset).

in Fig. 15, inclusion of the exact Debye-Waller factor, improves the integral con-

vergence, especially at large temperature. This allows one to use this method to

investigate a wider range of interactions.

Figures 16 and 17 report the comparison between the phonon friction eval-

uated without Debye-Waller factors [1], with one that includes those factors, as

evaluated in the present thesis, for 𝑇 = 0 and for an intermediate temperature

𝑇 = 1.62 𝜃𝐷 . The direct comparison indicates that replacing the Debye-Waller

factors with unity is not such a bad approximation. Especially when zooming on

the peak, small deviations are visible, and those deviations could only increase

at higher temperature.

Instructed by Fig. 17, we try to fabricate an approximate rule to quickly

evaluate friction at any temperature. We start by defining the following dimen-
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Figure 17: Quotient of friction evaluated for two different

temperatures or approximating the Debye-Waller factor with

unity. The velocity dependence of these ratios are quite sim-

ilar, strongly hinting at the possibility of a simplified law to

evaluate friction at any temperature based on the friction

evaluation carried out without Debye-Waller factors.

sionless friction ratio:

𝐹0(𝑣SL)
𝐹D-W=1(𝑣SL)

≡ 𝑟 (𝑣SL) ⇒ 𝐹𝑇 (𝑣SL)
𝐹D-W=1(𝑣SL)

≃ 𝑟−𝑏(𝑇) (𝑣SL) , (44)

where 𝑏(𝑇) is an increasing function of 𝑇 .

Equation (44) leads to Fig. 18. There is a way to determine 𝑏(𝑇), using
the fact that 𝐶 (𝑇) is small. For max( |Q|, |Q + G|) ≪ 𝐶 (𝑇)−1, we perform an

expansion of the Debye-Waller factor:

𝑒−𝑊 (𝑸)−𝑊 (𝑸+𝑮⊥) = 𝑒−(|𝑸 |2+|𝑸+𝑮⊥ |2)𝐶 (𝑇) ≃ 1 − (|𝑸 |2 + |𝑸 + 𝑮⊥ |2)𝐶 (𝑇) , (45)

⇒ 𝐹𝑇 (𝑣𝑆𝐿) ≃ ... [1 − (|𝑸 |2 + |𝑸 + 𝑮⊥ |2)𝐶 (𝑇)] ... = 𝐹no DW(𝑣𝑆𝐿) − 𝑃(𝑣𝑆𝐿)𝐶 (𝑇) .
(46)

Here 𝑃(𝑣𝑆𝐿) is obtained from Eq. (1) by substituting the Debye-Waller factor

with |𝑸 |2 + |𝑸 + 𝑮⊥ |2 assuming that the relavant integration converges. If we

substitute Eq. (46) into Eq. (44), omitting the 𝑣𝑆𝐿 dependence, we obtain:

𝐹𝑇 (𝑣SL)
𝐹DW=1(𝑣SL)

≃ 𝐹DW=1(𝑣SL) − 𝑃(𝑣SL)𝐶 (𝑇)
𝐹DW=1(𝑣SL)

= 1 − 𝑃(𝑣SL)𝐶 (𝑇)
𝐹DW=1(𝑣SL)

≃ exp

(︃
−𝑃(𝑣SL)𝐶 (𝑇)
𝐹DW=1(𝑣SL)

)︃
.

(47)
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Figure 18: The ratio 𝑟 = 𝐹0/𝐹D-W=1 (red solid line). For

another temperature, e.g. 𝑇 = 1.62𝜃𝐷 , then we can obtain

𝐹𝑇/𝐹D-W=1 as 𝑟−𝑏(𝑇). Thin lines: 𝑟−𝑏(𝑇) for increasing 𝑏(𝑇),
until at the right value 𝑏(𝑇) ≃ 7.89 there is a perfect match

with 𝐹1.62 𝜃𝐷/𝐹D-W=1.

Observe further that

𝐹0(𝑣SL)
𝐹DW=1(𝑣SL)

= exp

(︃
− 𝑃(𝑣SL)𝐶 (0)
𝐹DW=1(𝑣SL)

)︃
= 𝑟 (𝑣SL) ⇒ 𝑏(𝑇) = 𝐶 (𝑇)

𝐶 (0) . (48)

By comparing the expression for 𝑏(𝑇) with the formula for 𝐶 (𝑇), Eq. (34),
we formulate an interpretation of 𝑏(𝑇) as an effective boson factor (2𝑛𝜆 (𝒌) + 1),
namely, the weighted average of the boson factor over the 1BZ, and over the three

phonon branches. Indeed, notice that the temperature dependence of (2𝑛𝜆 (𝒌)+1),
Fig. 3, is similar overall to that of 𝐶 (𝑇), Fig. 11.

5 Discussion and Conclusion

We prove a factorization of the Debye-Waller exponent into a temperature-depen-

dent factor 𝐶 (𝑇), and a 𝑸-dependent term, namely |𝑸 |2. We focus on 𝐶 (𝑇) and
derive its exact expression, and a Debye-type approximation thereof. We take

advantage of the obtained explicit formula to compute the phonon friction, at a

specific temperature, with a computational cost similar to that of previous work

[1] where the Debye-Waller factors were approximated with unity.

Moreover, we obtain a nicely well approximate method to evaluate phonon

friction at any temperature using a relatively simple formula, based on the nu-

merical evaluation of friction done with the Debye-Waller factors replaced by

unity.
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Finally, we observe that the rapid large-|𝑸 | decay of the Debye-Waller factor

could be taken advantage of to investigate slow-decaying Fourier-transformed

slider-crystal interactions.

A A few basic crystal symmetries

We obtain phonon polarization vectors 𝝐𝜆 (𝒌) and frequencies 𝜔𝜆 (𝒌) by diagonal-

izing the dynamical matrix 𝐷𝜇𝜈. For these monoatomic crystals, the eigenvalue

equation:

𝜔2
𝜆 (𝒌) 𝜖𝜆𝜇 (𝒌) =

∑︁
𝜈

𝐷𝜇𝜈 (𝒌) 𝜖𝜆𝜈 (𝒌) (49)

where the elements of the dynamical matrix are:

𝐷𝑥𝑥 (𝒌) =
2𝐾

𝑚
(1 − cos(𝑘𝑥𝑎)) +

2𝐾′

𝑚
(2 − cos(𝑘𝑥𝑎) cos(𝑘𝑦𝑎) − cos(𝑘𝑥𝑎) cos(𝑘𝑧𝑎)),

𝐷𝑦𝑦 (𝒌) =
2𝐾

𝑚
(1 − cos(𝑘𝑦𝑎)) +

2𝐾′

𝑚
(2 − cos(𝑘𝑥𝑎) cos(𝑘𝑦𝑎) − cos(𝑘𝑦𝑎) cos(𝑘𝑧𝑎)),

𝐷𝑧𝑧 (𝒌) =
2𝐾

𝑚
(1 − cos(𝑘𝑧𝑎)) +

2𝐾′

𝑚
(2 − cos(𝑘𝑥𝑎) cos(𝑘𝑧𝑎) − cos(𝑘𝑦𝑎) cos(𝑘𝑧𝑎)),

𝐷𝜇𝜈 (𝒌) =
2𝐾′

𝑚
sin(𝑘𝜇𝑎) sin(𝑘𝜈𝑎) .

(50)

From here, it is possible to deduce a symmetry by reflection with respect to the

origin, because the minus sign inside the elements of the dynamical matrix does

not affect the cosines and the sines multiply each other, so as to cancel the minus

sing out:

𝜔𝜆 (−𝒌) = 𝜔𝜆 (𝒌)
𝝐𝜆 (−𝒌) = 𝝐𝜆 (𝒌) .

(51)

It is also possible to derive the symmetry under single component reflection:

𝑘𝜇 → −𝑘𝜇, indicating 𝒌′ the vector obtained with such a transformation. The

symmetries are the following:

𝜔𝜆 (𝒌′) = 𝜔𝜆 (𝒌) ,
𝝐𝜆,𝜇 (𝒌′) = 𝝐𝜆,𝜇 (𝒌), 𝝐𝜆,𝜈 (𝒌′) = −𝝐𝜆,𝜈 (𝒌), for 𝜈 ≠ 𝜇 .

(52)

See [1].
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B Symmetry for faster 𝐶 (𝑇) computation

Here is a more specific calculation to exploit the 𝑌𝜆 (𝒌) symmetry, or equally 𝜔𝜆 (𝒌)
symmetry. Referring to Table 2, one can compute 𝐶 (𝑇) faster in the following

way:

𝐶 (𝑇) = 1

6𝑁

14∑︁
𝑛=1

𝐼𝑛

∑︁
𝒌∈𝑆𝑛

∑︁
𝜆

𝑌𝜆 (𝒌) . (53)
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𝑛 𝑆𝑛 ≡ Set of 𝒌 𝐼𝑛 ≡ Symmetry factor

1 0 < 𝑥 < 𝑦 < 𝑧 < 𝜋 8 · 6 = 48

2 0 = 𝑥 < 𝑦 < 𝑧 < 𝜋 4 · 6 = 24

3 0 < 𝑥 = 𝑦 < 𝑧 < 𝜋 8 · 3 = 24

4 0 < 𝑥 < 𝑦 = 𝑧 < 𝜋 8 · 3 = 24

5 0 < 𝑥 < 𝑦 < 𝑧 = 𝜋 4 · 6 = 24

6 0 = 𝑥 = 𝑦 < 𝑧 < 𝜋 2 · 3 = 6

7 0 < 𝑥 = 𝑦 = 𝑧 < 𝜋 8 · 1 = 8

8 0 < 𝑥 < 𝑦 = 𝑧 = 𝜋 2 · 3 = 6

9 0 = 𝑥 < 𝑦 = 𝑧 < 𝜋 4 · 6 = 12

10 0 = 𝑥 < 𝑦 < 𝑧 = 𝜋 2 · 6 = 12

11 0 < 𝑥 = 𝑦 < 𝑧 = 𝜋 4 · 3 = 12

12 0 = 𝑥 = 𝑦 < 𝑧 = 𝜋 1 · 3 = 3

13 0 < 𝑥 = 𝑦 = 𝑧 = 𝜋 1 · 1 = 1

14 0 = 𝑥 < 𝑦 = 𝑧 = 𝜋 1 · 3 = 3

15 0 = 𝑥 = 𝑦 = 𝑧 < 𝜋 1 · 1 = 1

Table 2: The first columns is just an enumeration done for

clearness. The second contains all the set one needs to dis-

tinguish to avoid summing over terms that are repeated or

that do not exist inside the first Brillouin zone, where 𝑥, 𝑦, 𝑧

indicate the components of 𝒌. The third column contains the

symmetry factor to multiply to the summation over the set on

the left to get the entire first Brillouin zone. The explicit mul-

tiplication used to obtain the symmetry factor is intentional:

the first factor represents the number of reflections that can

be applied to a term within the set to yield a point inside the

first Brillouin zone; the second factor represents the number

of permutations that can be performed for the same purpose.

For completeness, the point (0, 0, 0), i.e. set 15, is listed here,

but in the computation of 𝐶 (𝑇) has to be excluded.
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