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Abstract

We compare the effects of geometric anharmonicity on bidimensional crystals
characterized by perfectly harmonic springs: the square and the hexagonal lat-
tice. In particular, we evaluate the difference between the total potential energy
of the system and the second- and third-order of its Taylor expansion in atomic
displacements. The anharmonic terms are nonzero, despite the harmonicity of the
atomic interactions, simply due to the lattice geometry. To evaluate the geomet-
ric anharmonicity quantitatively in realistic vibration conditions, we simulate the
two crystals with a molecular-dynamics code. We excite single phonons at points
of high symmetry at the edge of the first Brillouin zone, and we observe that,
due to symmetry, the third-order term vanishes: the fourth-order term dominates
anharmonicity. When we excite a random combination of phonons, instead, the
third-order term becomes the leading one.
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1 Introduction

Harmonic springs produce harmonic crystals only when connecting atoms in one dimen-
sional chains. In higher dimensions, however, they interestingly generate anharmonic
crystals. This phenomenon is known as ”geometric anharmonicity” [1, 2].

We study examples of crystal lattices consisting of atoms interacting via a harmonic
pairwise potential of the form:

𝑉tot =
1
2

𝑁∑︁
𝑖=1

∑︁
𝑗

𝐾𝑖 𝑗

2

(︂
𝑟𝑖 𝑗 − 𝑟eq

𝑖 𝑗

)︂2
. (1)

Here 𝑁 is the number of atoms, the index 𝑗 runs on the first and second nearest
neighbors to the 𝑖-th atom and 𝐾𝑖 𝑗 represent the force constant that quantifies the strength
of the interaction; 𝑟𝑖 𝑗 is the instantaneous distance between atoms 𝑖 and 𝑗 and 𝑟eq

𝑖 𝑗
is their

distance when all atoms sit at the equilibrium perfect-lattice configuration:

𝑟𝑖 𝑗 = ∥𝑟𝑖 − 𝑟 𝑗 ∥ =
√︄∑︁

𝜉

(𝜉𝑖 − 𝜉 𝑗 )2 , (2)

𝑟
eq
𝑖 𝑗

= ∥𝑟eq
𝑖
− 𝑟eq

𝑗
∥ =

√︄∑︁
𝜉eq

(𝜉𝑒𝑞
𝑖

− 𝜉eq
𝑗
)2 , (3)

where 𝜉 = 𝑥, 𝑦, 𝑧 and 𝜉eq = 𝑥eq, 𝑦𝑒𝑞, 𝑧eq.
In the Born-Oppenheimer adiabatic scheme [3], we study the dynamics of nuclei

independently of electronic motion, which is supposed to contribute to generate the
interatomic potential 𝑉tot.

It is evident [3,4,5] that the total potential energy of a linear chain of atoms, forced
to move in one dimension with harmonic pairwise interactions, coincides exactly with
its own second-order Taylor expansion, as long as no atomic displacements exceed one
lattice constant 𝑎 = |𝑥eq

𝑖
− 𝑥eq

𝑖±1 |. Indeed, in one dimension 𝑟𝑖 𝑗 = 𝑥𝑖 𝑗 = |𝑥𝑖 − 𝑥𝑖+1 | and the
potential in Eq.(1) becomes:

𝑉tot =
𝐾

2

𝑁∑︁
𝑖=1

( |𝑥𝑖 − 𝑥𝑖+1 | − 𝑎)2 =
𝐾

2

𝑁∑︁
𝑖=1

(𝑥𝑖+1 − 𝑥𝑖 − 𝑎)2 , (4)

as long as |𝑥𝑖+1 − 𝑥𝑖 | > 0. Eq.(4) is a sum of polynomials of second degree: they have
zero partial derivatives if the order of derivation exceeds the degree of the polynomial
itself [6]. This is why the one-dimensional potential coincides with its second-order
expansion and the resulting crystal is harmonic.

However, in higher dimensions this argument no longer holds. For example, J.
Miglio [2] carried out a preliminary investigation on how the nonpolynomial function
for the distance 𝑟𝑖 𝑗 (2) affects the Taylor expansion in two dimensions, introducing terms
of order greater than the second. In particular, he quantified the effects of geometric
anharmonicity for a two-dimensional square crystal by calculating the difference between
the exact potential energy of the system, obtained numerically through a molecular
dynamics (MD) code, and its analytical second-order Taylor expansion.
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The purpose of this thesis is to extend this research, by obtaining an explicit
expression for the third-order expansion and comparing it to the exact potential. In
addition, we conduct the same study in parallel for a lattice with hexagonal geometry.

This thesis is organized as follows: In Section 2, we recall the theory and known
results for the harmonic lattice dynamics. In particular, we derive the second-order
terms of the Taylor expansion of 𝑉tot and we discuss the phonon dispersion curves for
both geometries. Next, we report the third-order terms and a sketch of their derivation
in Section 3. In Section 4 we verify the correctness of the analytical Taylor expressions
previously obtained, by comparing them with the exact total potential energy, for small
deviations away from the equilibrium geometry. Finally, in Section 5 we excite specific
normal modes of oscillation of the two types of crystal and also combinations of several
of them in molecular dynamics (MD) simulations, to investigate the effects of geometric
anharmonicity in different contests.

2 The Harmonic Approximation

In this section we recall the main results of the harmonic theory of phonons. The phonon
dispersion laws are obtained from the second order Taylor expansion of 𝑉tot.

It is convenient to express all physical quantities as combinations of the main model
constants, namely 𝑎, 𝑚 and 𝐾 , as listed in Table 1.

To obtain the harmonic approximation, we expand 𝑉tot up to the second order in
the displacements from the equilibrium position 𝑢𝜉𝑖 = 𝜉𝑖 − 𝜉

eq
𝑖

:

𝑉tot = 𝑉0 +𝑉2 + 𝑜(𝑢3) = 𝑉0 +
1
2

∑︁
𝑖𝜉, 𝑗 𝜒

𝐷𝜉𝑖 ,𝜒 𝑗
𝑢𝜉𝑖𝑢𝜒 𝑗

+ 𝑜(𝑢3) , (5)

where 𝜉, 𝜒 = 𝑥, 𝑦, 𝑧; indexes 𝑖, 𝑗 = 1, 2, . . . , 𝑁 label individual unit cells of the crystal,
which, both for the square lattice and the hexagonal lattice, contain one atom each. Linear

Physical quantity Units

length 𝑎

mass 𝑚

spring constant 𝐾

wave vector 𝑎−1

force 𝐾𝑎

energy 𝐾𝑎2

time
√︁
𝑚/𝐾

frequency
√︁
𝐾/𝑚

velocity 𝑎
√︁
𝐾/𝑚

Table 1: Natural model units for all physical quantities in this work, expressed
as unique combinations of the three main parameters that characterise the
model: 𝑎, 𝑚, 𝐾 .
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terms vanish because the expansion is carried out around the equilibrium geometry. The
constant term𝑉0 is irrelevant to the study of lattice dynamics and vanishes for the specific
potential in Eq.(1).

𝐷𝜉𝑖 ,𝜒 𝑗
≡

(︃
𝜕2𝑉tot

𝜕𝑢𝜉𝑖𝜕𝑢𝜒 𝑗

)︃|︁|︁|︁|︁
eq

(6)

is the dynamical matrix of the crystal in real space. Using this matrix we can set up the
classical equations of motion for the dynamics of the nuclei:

𝑚𝑢̈𝜉𝑖 = −
∑︁
𝑗 𝜒

𝐷𝜉𝑖 ,𝜒 𝑗
𝑢𝜒 𝑗

. (7)

Given the lattice traslation vectors 𝑅⃗𝑖 and substituting in Eq.(7) a solution of the form

𝑢⃗𝑖 (𝑡) = 𝐴⃗(𝑞⃗, 𝜔)𝑒
𝑖

(︂
𝑞⃗·𝑅⃗𝑖−𝜔𝑡

)︂
, (8)

we obtain
−𝑚𝜔2𝐴𝜉 = −

∑︁
𝑗 𝜒

𝐷𝜉𝑖 ,𝜒 𝑗
𝑒
−𝑖 𝑞⃗·

(︂
𝑅⃗𝑖−𝑅⃗ 𝑗

)︂
𝐴𝜒 .

Defining the dynamical matrix of the crystal in reciprocal space as

𝐷𝜉,𝜒 (𝑞⃗) ≡
∑︁
𝑗

𝐷𝜉𝑖 ,𝜒 𝑗
𝑒
−𝑖 𝑞⃗·

(︂
𝑅⃗𝑖−𝑅⃗ 𝑗

)︂
, (9)

we can solve the following eigenvalue equation, in order to get the normal phonon modes
of the crystal we are studying:∥︁∥︁𝐷𝜉,𝜒 (𝑞⃗) − 𝑚𝜔2𝛿𝜉𝜒

∥︁∥︁ = 0 . (10)

The secular equation (10) produces 𝑑 eigenvalues for each 𝑞⃗, where 𝑑 is equal to
the problem dimensionality. So, as 𝑞⃗ varies within the first Brillouin zone (1stBZ),
𝑑 phononic branches are formed, whose frequencies are described by the functions
𝜔(𝑞⃗, 𝑑).

Appendix A provides more detail on this standard method for calculating phonon
dispersion frequencies for the 𝑑 = 2 dimensional case.
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Figure 1: A monoatomic linear chain describing longitudinal phonons, due
to the atoms being obliged to oscillate along the chain direction, in one
dimension only. Periodic boundary conditions such that the displacements
𝑢𝑁+1 = 𝑢1 are applied, to avoid an abrupt termination and preserve lattice
symmetry.

2.1 One Dimensional Chain

In this subsection we analyze a linear chain of equal atoms, such as the one in Figure 1.
The derivation of the longitudinal oscillation frequency as a function of 𝑞 is an

elementary exercise [3,4,5]. The result is:

𝜔(𝑞) = 2
√︂
𝐾

𝑚

|︁|︁|︁sin( 𝑞𝑎
2
)
|︁|︁|︁ . (11)

Figure 2 reports the dispersion relation (11) in an extended-zone scheme.
In the long wavelength limit (𝑞𝑎 ≪ 1) it is possible to derive the expression for

the sound velocity in the chain 𝑣𝑠:

𝜔 ≈
√︂
𝐾

𝑚
𝑎𝑞 = 𝑣𝑠 𝑞 , 𝑣𝑠 ≡

√︂
𝐾

𝑚
𝑎 . (12)

Figure 2: Oscillation frequencies of the linear chain as a function of the
wavevector 𝑞. The curve is extended even outside the 1stBZ [− 𝜋

𝑎
, 𝜋
𝑎
], greyed

region, to highlight the translational symmetry in 𝑞 space.
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2.2 Two-Dimensional Crystal, Square Lattice

We start with the two-dimensional square lattice already investigated in Ref.[2]. Ap-
pendix B details how to calculate the Taylor expansion of the potential in Eq.(1). Unlike
the one-dimensional chain, the two-dimensional crystal has two branches of acoustic
phonons, which are labelled as the lower or transverse (T) acoustic branch and the upper
or longitudinal (L) acoustic branch1.

In the square lattice, at equilibrium, the nearest neighbors are distant 𝑎 and the
second neighbors are separated by a distance 𝑎

√
2. This is evident in Figure 3. For this

reason, the interaction between the latter is expected to be weaker and characterized by
a constant 𝐾′<𝐾 , where 𝐾 is the force constant between nearest neighbors. Primitive
vectors in the direct lattice are 𝑎⃗1 = 𝑎(1, 0) and 𝑎⃗2 = 𝑎(0, 1), while those of the reciprocal
lattice are 𝑏⃗1 = 2𝜋

𝑎
(1, 0) and 𝑏⃗2 = 2𝜋

𝑎
(0, 1).

It is useful to fix a convention for the numbering of the first and the second neighbors
of the 𝑖-th atom. We adopt the numbering in Figure 4a.

Figure 4b reports the first Brillouin zone, at the center of the reciprocal lattice. The
1stBZ is drawn in detail in Figure 5, where dots identify special symmetry points.

The second-order Taylor expansion of Eq.(1) was calculated by J. Miglio [2] and
has the following form:

𝑉2 =
1
2

𝑁∑︁
𝑖=1

{︄
2 (𝐾 + 𝐾′)

(︂
𝑢2
𝑥𝑖
+ 𝑢2

𝑦𝑖

)︂
− 𝐾

⎡⎢⎢⎢⎢⎣
2∑︁
𝑗=1
𝑢𝑥 𝑗𝑢𝑥𝑖 +

4∑︁
𝑗=3
𝑢𝑦 𝑗𝑢𝑦𝑖

⎤⎥⎥⎥⎥⎦ +
+ 𝐾

′

2

8∑︁
𝑗=5

[︂
(−1) 𝑗

(︂
𝑢𝑥 𝑗𝑢𝑦𝑖 + 𝑢𝑦 𝑗𝑢𝑥𝑖

)︂
−

(︂
𝑢𝑥 𝑗𝑢𝑥𝑖 + 𝑢𝑦 𝑗𝑢𝑦𝑖

)︂]︂ }︄
.

(13)

Referring to the method outlined in Eqs.(5-10), the harmonic dispersion laws for normal
modes of crystal vibration are:

𝜔+/− =

{︄
2
𝐾

𝑚

[︃
sin2 𝑞𝑥𝑎

2
+ sin2 𝑞𝑦𝑎

2
+ 𝐾

′

𝐾

(︁
1 − cos 𝑞𝑥𝑎 cos 𝑞𝑦𝑎

)︁ ]︃
+

± 2
𝐾

𝑚

[︄(︂
sin2 𝑞𝑥𝑎

2
− sin2 𝑞𝑦𝑎

2

)︂2
+

(︃
𝐾′

𝐾
sin 𝑞𝑥𝑎 sin 𝑞𝑦𝑎

)︃2
]︄ 1

2
}︄ 1

2

.

(14)

The two solutions represent the frequencies of the longitudinal and transverse vibration,
respectively:

𝜔+ = 𝜔L , 𝜔− = 𝜔T .

They are depicted in Figure 6.
Since the two-dimensional plots of Figure 6 are not easily readable, it is convenient

to represent the frequencies as 𝑞⃗ varies along the symmetry directions in Figure 5, as it
is done in Figure 7.

1They are named after the fact that the eigenvectors of the dynamical matrix are approximately
perpendicular and parallel to the phonon wavevector 𝑞⃗, respectively.
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Figure 3: Square lattice with nearest (black springs) and next nearest (light
gray springs) neighbors interactions. The lattice step is 𝑎. Periodic boundary
conditions are supposed to be applied and then the crystal is regarded as
infinite.

Considering Eq.(14) and calculating the limit for |𝑞⃗ | −→ 0 and then dividing by
|𝑞⃗ |, we derive the sound velocities in the two-dimensional square crystal. It is useful to
represent 𝑞⃗ in polar coordinates, 𝑞𝑥 = |𝑞⃗ | cos 𝜃 and 𝑞𝑦 = |𝑞⃗ | sin 𝜃.

𝑣L/T = 𝑣+/− =

⌜⃓⎷
1
2
+ 𝐾

′

𝐾
±

√︄
1
4

cos2(2𝜃) +
(︃
𝐾′

𝐾

)︃2
sin2(2𝜃) 𝑎

(︃
𝐾

𝑚

)︃ 1
2

(15)

are nonzero for any 𝐾′ > 0. In the special case 𝐾′ = 0, the square-lattice instability
is evident from the vanishing of certain sound velocities in specific 𝑞⃗ directions, for
example the transverse 𝑣T for 𝜃 = 0. If 𝐾′ = 1

2𝐾 , instead, we obtain two isotropic sound
velocities:

𝑣L/T =

√︂
1 ± 1

2
𝑎

(︃
𝐾

𝑚

)︃ 1
2

. (16)

8



6

2

7 3

4

i

5

8

1

(a) Direct Lattice

𝑦

𝑥

(b) Reciprocal Lattice

1stBZ

𝑞𝑦

𝑞𝑥

Figure 4: Panel a: the numbering convention for the 𝑗-th atom surrounding
the 𝑖-th atom in the lattice. In panel b, instead, we show the reciprocal lattice
and the 1stBZ.

Γ
𝑋

𝑀

Figure 5: The 1stBZ of the square lattice. It has the shape of a square of
side 2𝜋

𝑎
. The high-symmetry points have the following coordinates (𝑞𝑥 , 𝑞𝑦)

in reciprocal space: Γ = (0, 0); 𝑋 = 𝜋
𝑎
(1, 0); 𝑀 = 𝜋

𝑎
(1, 1).
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Figure 6: The two frequency dispersion laws of Eq.(14) as a function of 𝑞⃗
inside the reciprocal square lattice with 𝑞𝑥 ∈ [− 𝜋

𝑎
, 𝜋
𝑎
] and 𝑞𝑦 ∈ [− 𝜋

𝑎
, 𝜋
𝑎
],

namely the 1stBZ. 𝜔L is reported on the left, while 𝜔T on right.

Figure 7: Phonon dispersion curve along the path Γ − 𝑋 − 𝑀 − Γ inside the
1stBZ, as drawn in Figure 5. The fact that the slope of the dispersion curves is
identical when arriving to Γ from different directions is an indication of the
isotropy of the quadratic expansion terms for 𝐾 ′ = 0.5𝐾 .
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2.3 Two-Dimensional Crystal, Hexagonal lattice

Unlike the square geometry, in the hexagonal crystal the number of nearest and next
nearest neighbors is 6 and their distances from the 𝑖-th atom are 𝑎 and

√
3𝑎, respectively.

As before, the two types of interaction are characterized by 𝐾 and 𝐾′<𝐾 . Figure 8 shows
a region of a hexagonal lattice, where only the springs connecting the nearest neighbors
are drawn. Figure 9a describes the numbering convention for neighbors adopted in this

Figure 8: Hexagonal lattice with periodic boundary condition applied. In
order to make the picture clearer, only the springs describing the interaction
between nearest neighbors are depicted.

thesis. Figure 9b reports the reciprocal lattice with the 1stBZ. They are constructed as
follows. First, we identify two primitive lattice vectors in direct space:

𝑎⃗1 = 𝑎 (1, 0) , 𝑎⃗2 = 𝑎

(︄
−1

2
,

√
3

2

)︄
. (17)

Then we calculate the corresponding ones in reciprocal space2

𝑏⃗1 = 2𝜋
𝑎⃗2 × 𝑧̂

|𝑎⃗1 × 𝑎⃗2 |
=

2𝜋
𝑎

(︃
1,

1
√

3

)︃
, 𝑏⃗2 = 2𝜋

𝑧̂ × 𝑎⃗1

|𝑎⃗1 × 𝑎⃗2 |
=

2𝜋
𝑎

(︃
0,

2
√

3

)︃
, (18)

that generate the reciprocal lattice, Figure 9b. The 1stBZ can be obtained by drawing the
bisector of the lines joining the nearest neighbors in the reciprocal lattice [3].

Referring to Appendix B, we calculate the second-order term of the Taylor expan-

2One can check the property 𝑏⃗𝑖 · 𝑎⃗ 𝑗 = 2𝜋𝛿𝑖 𝑗 .
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1stBZ

i 12

4 3

5 6

7

8

910

11 12

(a) Direct Lattice

𝑦

𝑥

(b) Reciprocal Lattice

𝑞𝑦

𝑞𝑥

Figure 9: Direct (a) and reciprocal (b) hexagonal lattice. Atoms from 1 to 6
are nearest neighbors to the 𝑖-th; from 7 to 8 they are second neighbors.

sion of 𝑉tot:

𝑉2 =
1
2

𝑁∑︁
𝑖=1

{︄
3 (𝐾 + 𝐾′)

(︂
𝑢2
𝑥𝑖
+ 𝑢2

𝑦𝑖

)︂
− 𝐾

2∑︁
𝑗=1
𝑢𝑥 𝑗𝑢𝑥𝑖+

+ 𝐾
4

[︃ 6∑︁
𝑗=3

(−1) 𝑗
√

3
(︂
𝑢𝑥 𝑗𝑢𝑦𝑖 + 𝑢𝑦 𝑗𝑢𝑥𝑖

)︂
−

(︂
𝑢𝑥 𝑗𝑢𝑥𝑖 + 3𝑢𝑦 𝑗𝑢𝑦𝑖

)︂ ]︃
+

− 𝐾′
8∑︁
𝑗=7
𝑢𝑦 𝑗𝑢𝑦𝑖 +

𝐾′

4

[︃ 12∑︁
𝑗=9

(−1) 𝑗
√

3
(︂
𝑢𝑥 𝑗𝑢𝑦𝑖 + 𝑢𝑦 𝑗𝑢𝑥𝑖

)︂
−

(︂
3𝑢𝑥 𝑗𝑢𝑥𝑖 + 𝑢𝑦 𝑗𝑢𝑦𝑖

)︂ ]︃}︄
.

(19)

Following the method sketched in Appendix A, we derive the harmonic phonon
oscillation frequencies. For simplicity, we take into account only the interaction between
first neighbors (𝐾′ = 0).

𝜔+/− =

√︂
𝐾

𝑚

{︄
3 − cos(𝑞𝑥𝑎) − 2 cos

(︂𝑞𝑥𝑎
2

)︂
cos

(︄√
3𝑞𝑦𝑎
2

)︄
+

±
[︃
cos2(𝑞𝑥𝑎) + cos2

(︂𝑞𝑥𝑎
2

)︂
cos2

(︄√
3𝑞𝑦𝑎
2

)︄
+

− 2 cos(𝑞𝑥𝑎) cos
(︂𝑞𝑥𝑎

2

)︂
cos

(︄√
3𝑞𝑦𝑎
2

)︄
+ 3 sin2

(︂𝑞𝑥𝑎
2

)︂
sin2

(︄√
3𝑞𝑦𝑎
2

)︄ ]︃ 1
2
}︄ 1

2

.

(20)

Using Eq.(20) one can once again graphically represent the longitudinal and trans-
verse phonon dispersion curves, as in Figure 10.

Evaluating the limit for |𝑞⃗ | −→ 0 yields two isotropic sound velocities, longitudinal
and transverse:

𝑣L/T = 𝑣+/− =

√
3

2

√︂
1 ± 1

2
𝑎

(︃
𝐾

𝑚

)︃ 1
2

. (21)
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The phonon dispersion curves are also reported along the high-symmetry directions
in Figure 11. These symmetry paths can be seen in Figure 12.

Figure 10: Phonon dispersion curves for the hexagonal lattice with nearest
neighbors only (𝐾 ′ = 0), Eq.(20), the 𝑞⃗ vector spanning the rectangle 𝑞𝑥 ∈
[− 4𝜋

3𝑎 ,
4𝜋
3𝑎 ] and 𝑞𝑦 ∈ [− 2𝜋√

3𝑎
, 2𝜋√

3𝑎
], which covers the 1stBZ enterely.

Γ
𝐾

𝑀

𝑀′

Figure 11: First Brillouin zone of the two-dimensional hexagonal lattice. It
has the shape of a regular hexagon. The special points in 𝑞⃗-space have the
following coordinates (𝑞𝑥 , 𝑞𝑦): Γ = (0, 0); 𝐾 = 2𝜋

𝑎
( 2

3 , 0); 𝑀 = 2𝜋
𝑎
( 1

2 ,
1

2
√

3
);

𝑀 ′ = 2𝜋
𝑎
(0, 1√

3
).
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Figure 12: Hexagonal lattice phonon dispersion curves along the high-
symmetry directions in the 1stBZ sketched in Figure 11. Only nearest-
neighbors interaction is taken into account (𝐾 ′ = 0). The sound velocity
isotropy manifests itself in the identical slope at Γ while arriving from differ-
ent directions.

3 Third-Order Taylor Expansions

Taking advantage of the calculations made in Appendix B, we derive term 𝑉3 in the
expansion of the total potential of Eq.(1). The result for the square lattice, with reference
to Figure 4 for the labelling of neighbour atoms 𝑗 , is:

𝑉3 =
1
6

𝑁∑︁
𝑖=1

{︄
2𝐾
𝑎

[︃ 2∑︁
𝑗=1

(−1) 𝑗
(︃
−𝑢𝑥 𝑗𝑢2

𝑦𝑖
− 2𝑢𝑦 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 +

1
2
𝑢2
𝑦 𝑗
𝑢𝑥𝑖 + 𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑦𝑖

)︃
+

+
4∑︁
𝑗=3

(−1) 𝑗
(︃
−𝑢𝑦 𝑗𝑢2

𝑥𝑖
− 2𝑢𝑥 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 +

1
2
𝑢2
𝑥 𝑗
𝑢𝑦𝑖 + 𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑥𝑖

)︃ ]︃
+

+ 𝐾
′

2𝑎

8∑︁
𝑗=5

[︃
(−1) 𝑗

(︃
−3𝑢𝑦 𝑗𝑢

2
𝑦𝑖
+ 𝑢𝑦 𝑗𝑢2

𝑥𝑖
+ 2𝑢𝑥 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 +

3
2
𝑢2
𝑦 𝑗
𝑢𝑦𝑖 −

1
2
𝑢2
𝑥 𝑗
𝑢𝑦𝑖 − 𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑥𝑖

)︃
+

+
(︄(︃

2 𝑗 − 13
2

)︃2
− 5

4

)︄ (︃
3𝑢𝑥 𝑗𝑢

2
𝑥𝑖
− 𝑢𝑥 𝑗𝑢2

𝑦𝑖
− 2𝑢𝑦 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 −

3
2
𝑢2
𝑥 𝑗
𝑢𝑥𝑖 +

1
2
𝑢2
𝑦 𝑗
𝑢𝑥𝑖 + 𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑦𝑖

)︃ ]︃}︄
,

(22)
where

(︂
2 𝑗−13

2

)︂2
− 5

4 is a ”sign rule”, i.e. it takes value ±1 depending on 𝑗 .
The third-order term for the hexagonal geometry, referring to Figure 9 for the
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numbering of the neighbouring atoms 𝑗 , is:

𝑉3 =
1
6

𝑁∑︁
𝑖=1

{︄
𝐾

𝑎

2∑︁
𝑗=1

(−1) 𝑗
(︂
−4𝑢𝑦 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 − 2𝑢𝑥 𝑗𝑢

2
𝑦𝑖
+ 𝑢2

𝑦 𝑗
𝑢𝑥𝑖 + 2𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑦𝑖

)︂
+

+ 𝐾

2𝑎

6∑︁
𝑗=3

[︃(︄(︃
2 𝑗 − 9

2

)︃2
− 5

4

)︄ (︃
9
2
𝑢𝑥 𝑗𝑢

2
𝑥𝑖
− 5𝑢𝑦 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 −

5
2
𝑢𝑥 𝑗𝑢

2
𝑦𝑖
− 9

4
𝑢2
𝑥 𝑗
𝑢𝑥𝑖 +

5
4
𝑢2
𝑦 𝑗
𝑢𝑥𝑖 +

5
2
𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑦𝑖

)︃
+

+
√

3
(︃

9/2 − 𝑗

|9/2 − 𝑗 |

)︃ (︃
3
2
𝑢𝑦 𝑗𝑢

2
𝑦𝑖
+ 𝑢𝑥 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 +

1
2
𝑢𝑦 𝑗𝑢

2
𝑥𝑖
− 3

4
𝑢2
𝑦 𝑗
𝑢𝑦𝑖 −

1
4
𝑢2
𝑥 𝑗
𝑢𝑦𝑖 −

1
2
𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑥𝑖

)︃ ]︃
+

+ 𝐾′
√

3𝑎

8∑︁
𝑗=7

(−1) 𝑗
(︂
−4𝑢𝑥 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 − 2𝑢𝑦 𝑗𝑢

2
𝑥𝑖
+ 𝑢2

𝑥 𝑗
𝑢𝑦𝑖 + 2𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑥𝑖

)︂
+

+ 𝐾
′

2𝑎

12∑︁
𝑗=9

[︃(︄(︃
2 𝑗 − 21

2

)︃2
− 5

4

)︄ (︃
3
2
𝑢𝑥 𝑗𝑢

2
𝑥𝑖
+ 𝑢𝑦 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 +

1
2
𝑢𝑥 𝑗𝑢

2
𝑦𝑖
− 3

4
𝑢2
𝑥 𝑗
𝑢𝑥𝑖 −

1
4
𝑢2
𝑦 𝑗
𝑢𝑥𝑖 −

1
2
𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑦𝑖

)︃
+

+ 1
√

3

(︃
21/2 − 𝑗

|21/2 − 𝑗 |

)︃ (︃
9
2
𝑢𝑦 𝑗𝑢

2
𝑦𝑖
− 5𝑢𝑥 𝑗𝑢𝑥𝑖𝑢𝑦𝑖 −

5
2
𝑢𝑦 𝑗𝑢

2
𝑥𝑖
− 9

4
𝑢2
𝑦 𝑗
𝑢𝑦𝑖 +

5
4
𝑢2
𝑥 𝑗
𝑢𝑦𝑖 +

5
2
𝑢𝑥 𝑗𝑢𝑦 𝑗𝑢𝑥𝑖

)︃ ]︃}︄
.

(23)
In this expression

(︂
2 𝑗−9

2

)︂2
− 5

4 , 9/2− 𝑗
|9/2− 𝑗 | ,

(︂
2 𝑗−21

2

)︂2
− 5

4 , and 21/2− 𝑗
|21/2− 𝑗 | are sign rules.

4 Expansion Verification

In this section a MD code, which simulates the previously described systems and calcu-
lates 𝑉tot, namely a numerical evaluation of the potential in Eq.(1), is exploited to verify
if the Taylor expansion terms obtained in Sections 2 and 3 are correct.

In order to confirm the correctness of the 𝑉2 and 𝑉3 expressions, we conduct a
few tests. We fix the initial pattern of deviations from equilibrium once and for all. In
particular, we set an array 𝜂⃗̃ that contains information about the initial displacements
from equilibrium of all atoms. For example, we randomly choose such deviations in
the [−0.5, 0.5] interval. Each displacement is then scaled by a factor 𝛼, a small length:
usually |𝛼 | ≪ 𝑎.

In order to give a precise meaning to 𝛼, the array 𝜂⃗̃ of the starting displacements
of dimension 2𝑁 is normalized:

𝜂⃗ =
𝜂⃗̃

∥ 𝜂⃗̃∥
, (24)

where ∥ 𝜂⃗̃∥ =

√︃∑︁2𝑁
𝑖=1 𝜂̃

2
𝑖
. Now 𝜂⃗ is a dimensionless array of unit norm, while 𝛼 is a

length, that we can express in units of the lattice constant 𝑎.
We use the Bravais-lattice vector 𝑅⃗𝑖 to identify the equilibrium position of the 𝑖-th

atom. The starting deviations from the equilibrium configuration will be described by:

𝑢⃗0 = 𝛼 𝜂⃗ . (25)

For both geometries, square and hexagonal, periodic boundary conditions (PBCs)
are applied to a supercell: for the square lattice we take a (6𝑎 × 6𝑎) supercell that
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contains 𝑁 = 36 atoms; for the hexagonal crystal the supercell is (6𝑎 × 3
√

3𝑎) in size,
and contains 𝑁 = 36 atoms too.

For each 𝛼, we record the values of 𝑉tot, 𝑉2, 𝑉3, in order to verify the following
leading 𝛼 dependences:

• 𝑉tot ≈ 𝑉2 ∝ 𝛼2 ;

• Δ𝑉2 ≡ 𝑉tot −𝑉2 ≈ 𝑉3 ∝ 𝛼3 ;

• Δ𝑉3 ≡ 𝑉tot −𝑉2 −𝑉3 ∝ 𝛼4 , for 𝛼 −→ 0 .

4.1 Second-Order Terms

We first verify that the expressions in Eq.(13) and (19) are correct, by comparing 𝑉2
and 𝑉tot, plotted as a function of 𝛼2 in Figure 13. We observe that the two quantities
are practically coinciding, since, for small 𝛼, 𝑉2 is the dominant term of the expansion.
As shown in the insets, where a broader range in 𝛼 is explored, for large displacements
𝛼 ≃ 𝑎, small deviations occur.

Figure 13: Comparison between the second-order Taylor term 𝑉2 and the
exact numerical value of 𝑉tot, obtained for a fixed random displacement of
unit norm, multiplied by an amplitude 𝛼, and reported as a function of 𝛼2.
Since 𝑉2 is the leading term in the expansion, for both geometries in the limit
𝛼 −→ 0 these quantities coincide. The inset shows that deviations, representing
anharmonic terms, are quite small even for displacements 𝛼 of the order of 𝑎
and even larger.

4.2 Third-Order Terms

A similar procedure is applied to the third-order terms 𝑉3, Eqs.(22) and (23), which are
compared with the totality of the anharmonic terms Δ𝑉2 = 𝑉tot − 𝑉2. Figure 14 shows
that in the limit 𝛼 −→ 0 these two quantities coincide, so the expressions (22) and (23) are
also validated. The prefactor of the 𝛼3 term, and even its sign, depends on the specific
initial configuration, which is picked in the choice of the random displacements. Also
in this test, for large 𝛼 ≃ 𝑎, sizable deviations occur (see insets).
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Figure 14: Comparison of the third-order term 𝑉3, computed according to
Eq.(22) (square lattice, left) and (23) (hexagonal lattice, right), with Δ𝑉2 =

𝑉tot − 𝑉2. The good agreement for small 𝛼 indicates the correctness of the
expressions obtained. The disagreement between Δ𝑉2 and 𝑉3 observed for
larger 𝛼 ≃ 𝑎 (insets) is due to the former containing terms of order higher
than the third.

4.3 Higher-Order Terms

As a final check, in Figure 15 we verify that the leading contribution to the remainder
Δ𝑉3 = 𝑉tot −𝑉2 −𝑉3 is proportional to 𝛼4 for small 𝛼. As expected, for 𝛼 ≳ 1 deviations
appear, see insets.

Figure 15: The remainder of the expansion truncated to third order, namely
Δ𝑉3 = 𝑉tot −𝑉2 −𝑉3, exhibits a leading 𝛼4 dependence for 𝛼 −→ 0.

5 Numerical Simulations

We now proceed to investigate the effect of the geometric anharmonicity on the dy-
namics. The MD code integrates the equation of motion3 for the atoms in the crystal,
obtaining a numerically accurate time evolution of the positions 𝑟𝑖 for 𝑖 = 1, ... , 𝑁 over

3The code adopts the Runge-Kutta-Fehlberg (RKF) method to integrate the resulting system of differ-
ential equations, with an adaptive time step to guarantee an accurate integration.
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a predetermined time interval. Based on these dynamic variables, the code numerically
estimates the time evolution of 𝑉tot. J. Miglio [2] implemented a function to compute
𝑉2 according to Eq.(13) for the square lattice. We added three new functions: one to
calculate 𝑉2 for the hexagonal crystal, Eq.(19); and two more functions that compute 𝑉3
in both geometries, Eqs.(22) and (23).

The dynamics of the system is purely Newtonian, it includes no dissipative terms.
We checked that the total energy is well conserved as it should. We simulate the
two systems, square and hexagonal, within the two supercells introduced in Section 4,
applying PBCs appropriately.

By default we run simulations with duration 𝑡end = 30
√︁
𝑚/𝐾 . At the initial time

𝑡0 = 0 a suitable starting configuration (not necessarily involving random displacements)
is set. As in Section 4 all atoms have a starting displacement 𝑢⃗0 = 𝛼𝜂⃗ and zero velocity.
Therefore, initially the kinetic energy vanishes, and the potential energy is maximum.

To evaluate the time-averaged magnitude of Δ𝑉2 = 𝑉tot − 𝑉2, containing all anhar-
monic terms from the third order onward, we consider the following mean square:

𝜎Δ𝑉2 =
⎛⎜⎝
∫ 𝑡end
𝑡0

Δ𝑉2(𝑡)2 𝑑𝑡

𝑡end

⎞⎟⎠
1
2

. (26)

We evaluate 𝜎Δ𝑉2 on a set of simulations all of the same duration, but charac-
terized by different amplitudes 𝛼 of the initial displacement. We report 𝜎Δ𝑉2 (𝛼) on
a bilogarithmic-scale graph. In this type of graph, a power law manifests itself in a
linear trend, whose slope gives the exponent of the underlying power law. The resulting
exponent provides information about which anharmonic term dominates in that specific
phonon excitation.

This study on 𝜎Δ𝑉2 was done by J. Miglio [2] for the square lattice. In the present
thesis we have the possibility to study the new average magnitude

𝜎Δ𝑉3 =
⎛⎜⎝
∫ 𝑡end
𝑡0

Δ𝑉3(𝑡)2 𝑑𝑡

𝑡end

⎞⎟⎠
1
2

, (27)

of the deviation Δ𝑉3 = 𝑉tot −𝑉2 −𝑉3 that contains all anharmonic terms from the fourth
order onward.

SinceΔ𝑉3 values calculated by the RKF method at different instants of integration of
differential equations are correlated within a certain correlation time, we cannot compute
the standard deviation of 𝜎Δ𝑉3 using the usual formula, because the time average under
square root (27) is calculated on sampled values that are not independent. Therefore, in
Appendix C we explain how we estimate 𝜎Δ𝑉3 and its error.

Given a general equilibrium lattice vector 𝑅⃗ = 𝑛𝑎1⃗ +𝑚𝑎2⃗ with 𝑛, 𝑚 ∈ 𝑍 , a generic
phonon wave has the form

𝜂⃗(𝑅⃗𝑖) = 𝐴⃗𝑒𝑖 𝑞⃗·𝑅⃗𝑖 , (28)

where 𝐴⃗ = (𝐴𝑥 , 𝐴𝑦) is the wave polarization vector. For simplicity, instead of studying
propagating waves like the one in Eq.(28), we simulate stationary waves. In practice, we
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take the real part of Eq.(28) and thus we excite the stationary modes of oscillation of the
lattice, by fixing specific values of 𝑞⃗ and of 𝐴⃗ in the cosine expression:

𝜂⃗(𝑅⃗𝑖) = 𝐴⃗ cos(𝑞⃗ · 𝑅⃗𝑖) . (29)

We normalize the array 𝜂⃗ as detailed in Section 4.

5.1 Square Lattice

Different oscillation modes of the square lattice are simulated below. Since simulations
deal with a 6 × 6 supercell, to which PBCs are applied, there are only discrete allowed
𝑞⃗ points in the first Brillouin zone, determined by the following rule [3]:

𝑞⃗ =
𝑛1
𝑁𝑛1

𝑏⃗1 +
𝑛2
𝑁𝑛2

𝑏⃗2 , (30)

where
𝑛𝜉 = −

𝑁𝑛𝜉

2
+ 1,−

𝑁𝑛𝜉

2
+ 2, . . .

𝑁𝑛𝜉

2
− 2,

𝑁𝑛𝜉

2
− 1,

𝑁𝑛𝜉

2
,

and 𝑁𝑛𝜉 are lattice repetitions in the 𝑎⃗1, 𝑎⃗2 primitive directions. Since 𝑁𝑛1 = 𝑁𝑛2 = 6,
the allowed 𝑞⃗ points are:

𝑞𝑥 , 𝑞𝑦 = 0,±1
6

2𝜋
𝑎
,±2

6
2𝜋
𝑎
,

3
6

2𝜋
𝑎
.

Points with 𝑞𝑥 = − 𝜋
𝑎

and/or 𝑞𝑦 = − 𝜋
𝑎

are excluded because they coincide with 𝑞𝑥 = 𝜋
𝑎

and/or 𝑞𝑦 = 𝜋
𝑎

(zone-edge 𝑞⃗ values).
This preliminary study shows that, because of the PBCs, there are 𝑁𝑛1𝑁𝑛2 = 36 allowed
wavevectors in the 1stBZ and then 36 phonon modes per phonon branch. The total
number of different phonon modes in the two branches is 2𝑁𝑛1𝑁𝑛2 = 72, coinciding with
the number of degrees of freedom for the motion in 2𝐷 of 𝑁𝑛1𝑁𝑛2 = 36 atoms. We
first simulate two different zone-edge (ZE) phonons, and then a random superposition
of normal modes.

5.1.1 Point-𝑋 Zone-Edge Phonon

Longitudinal and transverse vibration waves of the square crystal with wavevector equal
to 𝑞⃗ = 𝜋

𝑎
(1, 0) have wavelength 𝜆 = 2𝑎. They are located at the 𝑋 simmetry point of

Figure 5. According to Eq.(29), the initial displacements are:

𝜂𝑥𝑖 = cos
(︂𝜋
𝑎
𝑅⃗𝑖

)︂
, 𝜂𝑦 = 0 . (31)

𝑅⃗𝑖 assumes the values of the equilibrium atomic positions 𝑅⃗𝑖 = 𝑖 ·𝑎, where 𝑖 = 0, 1, . . . , 5.
This pattern of displacements is illustrated in Figure 16.

The 𝜎Δ𝑉2 study conducted in Ref.[2] concluded that, for both longitudinal and
transverse phonons at 𝑋 , the dominant anharmonic term in the 𝛼 −→ 0 limit is the fourth,
since the third order cancels out. The justification given for the fact that 𝑉3 = 0 can
be found in Ref.[2]’s Appendix and goes as follows: ”the third order is a combination
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Figure 16: Point-𝑋 zone-edge atomic initial displacements. The normal
mode wavelength is 𝜆 = 2𝜋

𝑞
= 2𝑎. Black single arrows describe the longitu-

dinal phonon; red double arrows represent the transverse motion.

of polynomials coupled in such a way that their total sum cancels out as a result of
displacements from the equilibrium position that follow the symmetries of the lattice
under consideration”. That statement can now be confirmed by examining Eq.(22):
taking longitudinal motion as an example, all terms ∝ 𝑢𝑦𝑖/ 𝑗 vanish: therefore only the
terms ∝ 𝛼𝑢𝑥 𝑗𝑢

2
𝑥𝑖

and ∝ 𝛼𝑢2
𝑥 𝑗
𝑢𝑥𝑖 could be nonzero. However, by adding all these terms

up, taking into account the appropriate signs, they cancel each other out.
Figure 17 reports the time evolution of Δ𝑉2 and Δ𝑉3 for both longitudinal and

transverse waves, excited with a small amplitude 𝛼 = 10−2𝑎. Since 𝑉3 = 0, Δ𝑉2 and Δ𝑉3
coincide. The amplitude of these high-order energy terms is larger for the transverse
mode than for the longitudinal one. The oscillations have different frequencies, that
match Figure 7. Figure 18 reports the average magnitudes of 𝜎Δ𝑉2 and 𝜎Δ𝑉3 as a function
of 𝛼. Of course, 𝜎Δ𝑉2 coincides with 𝜎Δ𝑉3 for both longitudinal and transverse phonons.
A logarithmic fit of the data reveals a power law of the type: 𝜎Δ𝑉3 ∝ 𝛼4. This means
that the dominating term is the fourth-order one, since 𝑉3 = 0. Error bars are visible
and represent the fluctuations associated with each 𝜎Δ𝑉2 (𝛼) or 𝜎Δ𝑉3 (𝛼) point. Here and
in the rest of this thesis, they are estimated using Eq.(48). Incompatibility between the
expected and estimated angular coefficient is observed in Figure 18. Compatible values
are obtained by repeating the study on a smaller number of 𝜎Δ𝑉3 points.
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Figure 17: Time evolution of Δ𝑉2 and Δ𝑉3 (coincident) for the longitudinal
(black solid line) and transverse (red dashed line) phonon excitations at the
𝑞⃗ point 𝑋 of a 6 × 6 square lattice. The excitation amplitude is 𝛼 = 10−2𝑎.
The longitudinal motion is associated to a higher-oscillation frequency and a
smaller amplitude of these anharmonic terms.

Figure 18: 𝜎Δ𝑉2 (𝛼) and 𝜎Δ𝑉3 (𝛼), Eqs.(26) and (27), for the ZE longitudinal
and transverse phonons at 𝑋 for the square lattice (see Figures 5 and 16). Both
follow a power law𝜎Δ𝑉3 ∝ 𝛼4 over a broad range of 𝛼, as confirmed by a linear
fit on the logarithms of 𝛼 and 𝜎Δ𝑉3 , whose angular coefficients are compatible
with the expected exponent 4. Error bars represent the fluctuations related to
the calculation of 𝜎Δ𝑉3 and they are estimated using Eq.(48). Each point is
the result of an average over a simulation of duration 𝑡end = 30(𝑚/𝐾)1/2.
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Figure 19: Diagonal ZE atomic displacements. Black single arrows describe
longitudinal displacements; red double arrows represent transverse displace-
ments for 𝑞⃗ = 2𝜋

𝑎
(1, 1). The two are interchangeable if we consider the

equivalent point 𝑞⃗ = 2𝜋
𝑎
(1,−1).

5.1.2 Point-𝑀 Zone-Edge Phonon

Next, we simulate zone-edge phonons at the 1stBZ corner, i.e. oscillations having
wavevector 𝑞⃗ = 𝜋

𝑎
(1, 1), namely the 𝑀 point in Figure 5, with wavelength 𝜆 = 2𝜋

|𝑞⃗ | =
√

2𝑎.
Figure 19 visualizes the atomic starting displacements.

Figure 19 makes it clear that, at this 𝑞⃗ point in practice the longitudinal motion
is equivalent to the transverse one. This observation is reflected in the fact that the
respective phonon dispersion frequencies coincide at the 𝑀 point in Figure 7 and that
Δ𝑉2(𝑡) and Δ𝑉3(𝑡) coincide in Figure 20, which shows the time evolution of Δ𝑉2 and
Δ𝑉3 for 𝛼 = 10−2𝑎.

As in the previous subsection, the trend of 𝜎Δ𝑉3 as a function of 𝛼 is studied. Figure
21 shows the results. For this diagonal ZE atomic oscillation, exactly as in the 𝑋-point
phonon, the dominant anharmonic term is the fourth, since 𝑉3 = 0.
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Figure 20: For 𝛼 = 10−2𝑎, perfectly coinciding Δ𝑉2 and Δ𝑉3 associated with
ZE longitudinal or transverse phonons at 𝑀 point of the hexagonal lattice.
This quantity is systematically negative.

Figure 21: 𝜎Δ𝑉3 as a function of the amplitude 𝛼 of a 𝑞⃗ = 𝑀 phonon
excitation of a 6 × 6 square lattice. Like in Figure 18, a fit on data points
confirms the power law 𝜎Δ𝑉3 ∝ 𝛼4. Data points and their error bars are
computed as in Figure 18. Longitudinal and transverse phonon frequencies
coincide at point 𝑀 .

23



Figure 22: 𝑉tot, 𝑉2, 𝑉3, Δ𝑉2 and Δ𝑉3 as a function of time, related to the
random combination of phonons of the square lattice for 𝛼 = 10−2𝑎. Since
𝑉tot and 𝑉2 have much larger amplitude than the other quantities, we multiply
𝑉3 and Δ𝑉2 by 103, and Δ𝑉3 by 105, in order for all the signals to be visible.

5.1.3 Combination Of Phonons

For all special displacements investigated so far, the𝑉3 term vanishes exactly. In contrast,
by starting with random displacements from equilibrium, like for the static evaluations
of Section 4, we can excite several phonon modes simultaneously and, as a result of the
lack of symmetry, we can explore situations where 𝑉3 ≠ 0.

Figure 22 shows the time evolution of 𝑉tot, 𝑉2, 𝑉3,Δ𝑉2,Δ𝑉3. These oscillations are
the result of the superposition of vibrating modes of different frequencies and amplitudes.
We can compare them, for example, with the single-mode oscillation in Figure 20.

Figure 23 illustrates the results of the average amplitude 𝜎Δ𝑉3 analysis. In this
simulation 𝑉3 ≠ 0 and then it is the leading anharmonic term; the next one is the fourth
order.

5.2 Hexagonal Lattice

In the following we simulate different hexagonal crystal oscillations. In this case 𝑁𝑛1 = 6
and 𝑁𝑛2 = 6. Therefore, referring to Eq.(30):

𝑛1, 𝑛2 = 0,±1,±2, 3

and there are 𝑁𝑛1𝑁𝑛2 = 36 allowed wavevectors in the 1stBZ as well as 36 phonon modes
per branch. The number of degree of freedom and therefore the total number of phonon
modes in the two branches is 72.
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Figure 23: 𝜎Δ𝑉2 and 𝜎Δ𝑉3 for a random oscillation of the square lattice. Two
distinct fits reveal that 𝜎Δ𝑉2 ∝ 𝛼3, while 𝜎Δ𝑉3 ∝ 𝛼4. Error bars are visible
and they are computed using Eq.(48).

5.2.1 Point-𝐾 Zone-Edge Phonon

The ZE phonon associated with point 𝐾 in Figure 11 has 𝑞⃗ = 2𝜋
𝑎

(︂
2
3 , 0

)︂
and thus a

wavelength 𝜆 = 3
2𝑎. According to the Eq.(29), the initial longitudinal displacements

from equilibrium are:

𝜂𝑥𝑖 = cos
(︃
4𝜋
3𝑎

𝑅⃗𝑖

)︃
, 𝜂𝑦 = 0 , (32)

where 𝑅⃗𝑖 assumes values which are integer multiples of 𝑎/2.
Figure 24 sketches the atomic displacements for this normal mode of oscillation.

Exactly like for the ZE phonon at point 𝑀 in the square lattice, also for this phonon
of the hexagonal lattice the longitudinal and transverse motion coincide. We see the
coincidence of these frequencies in Figure 12, where the respective dispersion curves
meet at point 𝐾 .

Figure 25 compares the time evolution of 𝑉3 and Δ𝑉2. By analysing Eq.(23), like
we did for the square lattice, we see that 𝑉3 vanishes for the initial displacements of
this phonon. Indeed, in Figure 25 we observe that this happens at the beginning of the
simulation. However, as soon as the system begins to vibrate, anharmonic terms are
activated, which excite weakly some other phonon mode, whose coupling provides 𝑉3
with the peculiar time evolution observed in Figure 25: three small peaks alternating
with a larger one.

In Figure 26, we observe that𝑉tot and its Taylor terms from fourth order onward (i.e.
Δ𝑉3) oscillate at the same frequency. However, Δ𝑉3 deviates visibly from the cosine-like
profile of 𝑉tot.
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Figure 24: ZE phonon on point 𝐾 of the hexagonal lattice. Black single
arrows refer to longitudinal oscillation, red double ones instead describe
the transverse phonon. The wavelength associated to this normal mode is
𝜆 = 3

2𝑎. Note that the shorter arrows have half the length of the longer ones
and opposite orientation.

To evaluate the power law of 𝑉3 energy contribution, we execute the average am-
plitude 𝜎Δ𝑉2 and 𝜎Δ𝑉3 analysis. Figure ?? exposes the results of this study. Remarkably,
the fit on 𝜎Δ𝑉3 data reveals that the fourth order is the dominant anharmonic one, like
for the 𝜎Δ𝑉2 points. The latter is of course dominated by fourth-order terms, 𝜎Δ𝑉2 ∝ 𝛼4.
The difference between Δ𝑉2 and Δ𝑉3 is similar to ⟨𝑉3⟩. If we evaluated the quadratic
mean of 𝑉3 with an expression similar to Eq.(27), we would also obtain a power law
∝ 𝛼4, which is quite remarkable for a third-order term.

Figure 25: Third-order Taylor expansion (blue dashed line) compared with
Δ𝑉2 (solid red line). These oscillations correspond to 𝛼 = 10−2𝑎. Longitu-
dinal and transverse motion coincide for the specific point-𝐾 phonon of the
hexagonal lattice (Figure 12). 𝑉3 vanishes exactly at 𝑡0 = 0, as predicted
by Eq.(23). The observed time evolution originates because of anharmonic
terms of higher-than-third order.
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Figure 26: Terms from the fourth order onward (Δ𝑉3, green dashed line),
compared with the total potential (black solid line), for 𝛼 = 10−2𝑎 and
the coinciding longitudinal and transverse oscillations at point 𝐾 , for the
hexagonal lattice. Δ𝑉3 is multiplied by 106 in order to make it visible.

Figure 27: Zone-edge phonons at point 𝐾 of the hexagonal lattice, see
Figure 11. Longitudinal and transverse waves coincide as shown in Figure
12. 𝜎Δ𝑉2 ∝ 𝛼4 and 𝜎Δ𝑉3 ∝ 𝛼4. However, there is a difference in the prefactor
of the power laws, which translates in a shift of the two linear trends in log
scale. This is due to the fact that, even if 𝑉3 = 0 at 𝑡0, however, once the
system starts to vibrate, other phonons are weakly activated and their coupling
provides an energy contribution of third order in the displacements, see Figure
25. These other modes are responsible for 𝜎Δ𝑉2 ∝ 𝛼4, but not coinciding with
𝜎Δ𝑉3 .
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Figure 28: Zone-edge phonon at point 𝑀 ′ of the hexagonal lattice, Figure
11. This wave has 𝜆 =

√
3𝑎. Black single arrows identify the longitudinal

displacement, while red double arrows describe the transverse one.

5.2.2 Point-𝑀′ Zone-Edge Phonon

Next, we simulate a zone-edge phonon at 𝑀′ point of the hexagonal lattice, Figure 11.
It has 𝑞⃗ = 2𝜋

𝑎
(0, 1√

3
) and 𝜆 =

√
3𝑎. Longitudinal displacements from equilibrium along

the vertical direction are:

𝜂𝑥 = 0 , 𝜂𝑦𝑖 = cos( 2𝜋
√

3𝑎
𝑅⃗𝑖) , (33)

with 𝑅⃗𝑖 =
√

3𝑎 · 𝑖 and 𝑖 = 0, 1
2 , 1, . . .

5
2 . Figure 28 schematises the atomic initial

displacements for this phonon.
In Figure 29 we report Δ𝑉2(𝑡) and Δ𝑉3(𝑡) for 𝛼 = 10−2𝑎. The two quantities

coincide for both the longitudinal and the transverse motion. This suggests that 𝑉3 ≡ 0.
The two oscillations have visibly different frequencies, as expected at point𝑀 , see Figure
12.

In Figure 30 we evaluate the amplitude of the dominant anharmonic orders. What
emerges is that 𝜎Δ𝑉2 = 𝜎Δ𝑉3 ∝ 𝛼4 and then even for these modes the fourth order is the
leading one.
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Figure 29: Δ𝑉2(𝑡) and Δ𝑉3(𝑡) associated with the longitudinal (black solid
line) and transverse (red dashed line) ZE oscillation at point 𝑀 ′ of the hexag-
onal lattice. They are computed for 𝛼 = 10−2𝑎. The two waves are different
in amplitude and frequency.

Figure 30: ZE phonon at point 𝑀 ′ of the hexagonal lattice, Figure 11. The
fit’s slope reveals that 𝜎Δ𝑉3 ∝ 𝛼4 for the longitudinal and for the transverse
motion. Thus, as long as 𝑉3 = 0, the fourth is the leading anharmonic order.
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Figure 31: Time evolution of 𝑉tot ≈ 𝑉2, 𝑉3, Δ𝑉2 and Δ𝑉3 for a random
excitation with 𝛼 = 10−2𝑎 of the hexagonal lattice. We multiply 𝑉3 and Δ𝑉2

by a factor 103, and Δ𝑉3 by 105 for easier comparison.

5.2.3 Combination Of Phonons

By exciting the single phonon at high-symmetry point 𝑀′, we observed that 𝑉3 vanishes
exactly. Also for the point-𝐾 phonon we concluded that 𝑉3 = 0 at 𝑡0, by looking at
Figure 25. However, the phonon at point 𝐾 is characterised by the fact that, as soon as
the atoms begin to move, other phonons emerge, whose coupling is responsible for the
time evolution of 𝑉3 in Figure 25.

In order to investigate an atomic motion with 𝑉3 ≠ 0 (even at 𝑡0), we simulate a
random superposition of vibrational modes of the hexagonal lattice, generated by random
displacements, like in Section 5.1.3.

Figure 31 compares the time evolution of all the studied quantities for this random
combination of phonons. As expected, these oscillations have no periodicity.

The time averages of Figure 32 reveal that the leading order of the anharmonic
terms in 𝑉tot is the third order, followed by the fourth one, as proved by 𝜎Δ𝑉2 ∝ 𝛼3 and
𝜎Δ𝑉3 ∝ 𝛼4.

6 Conclusions

In this thesis we have studied a few aspects of lattice dynamics and geometric anhar-
monicity. In particular, we have considered 2D crystal lattices of different geometry:
square and hexagonal.

In Section 2 we have calculated the harmonic phonon dispersion frequencies for
these systems. Then, with the intention of going beyond the harmonic approximation
and investigating the nature of geometric anharmonicity, in Section 3 we have derived
the expressions of the third-order terms in the Taylor expansion of the total potential in
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Figure 32: Study on dominant orders in a random superposition of phonons
of the hexagonal lattice. Two fits reveal the power laws 𝜎Δ𝑉2 ∝ 𝛼3 and
𝜎Δ𝑉3 ∝ 𝛼4. Error bars are computed as explained in Appendix C.

Eq.(1), for both geometries. We have verified the correctness of these expressions in
Section 4.

Finally, in Section 5 we have conducted a few numerical simulations using a
MD code. For both bidimensional lattice geometries, we have first studied certain
zone-edge single phonons, and then a combination of vibrating modes. For each of
these atomic motions, we have analysed which terms of the Taylor expansion of 𝑉tot
dominate. In particular, we have executed a campaign of simulations, changing the
vibration amplitude 𝛼 and evaluating the average quantities 𝜎Δ𝑉2 and 𝜎Δ𝑉3 , Eqs.(26)
and (27). We have verified that for specific zone-edge phonons, associated with certain
high-symmetry points, the third-order term vanishes and the fourth one is the leading
anharmonic term. In the hexagonal crystal, however, we have identified a zone-edge
phonon (point𝐾 , Figure 11) where𝑉3 = 0 only at the beginning of the simulation: during
the time evolution, anharmonic terms activate other phonon modes, producing a nonzero
𝑉3 whose average amplitude, remarkably, grows as 𝛼4. We have verified that the same
phenomenon occur for other 𝑞⃗ points, not at the zone boundary. A precise theoretical
understanding of this peculiar coupling phenomenon probably deserves further attention.

When we excite a random set of phonons, 𝑉3 is the first dominant anharmonic
term, in both the square and hexagonal lattice. This is the expected behaviour for general
displacements, where symmetry does not cancel third-order terms. Perhaps, a single
phonon mode associated to nonzero 𝑉3 may exist and it would be interesting to identify.

This research could also be extended by assuming a different pairwise interaction
between atoms, e.g. a Lennard-Jones potential. One would need to replace the expression
of this new potential in Eq.(42) and carry out a similar derivation to the one reported in
Appendix B.

Another extension of the present work would be the calculation of the fourth-order
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terms in the potential. This 𝑉4 term would allow us to describe precisely anharmonicity
even in simple high-symmetry single-phonon excitation. Besides, 𝑉4 would permit us to
study the new quantity Δ𝑉4 ≡ 𝑉tot − 𝑉2 − 𝑉3 − 𝑉4, which contains all anharmonic terms
starting from the fifth order.

Finally, it would be interesting to evaluate the effect of these anharmonic terms on
the overall equation of state for such model crystal.

A Dynamical Matrix Method

We follow the method suggested by Ref.[7] to derive the phonon dispersion curves in
harmonic approximation.

𝑅⃗ 𝑗

𝑖

𝑗

𝑢⃗𝑖

𝑢⃗ 𝑗

Figure 33: Diagram on the interaction between atom 𝑖 and a 𝑗-th atom. In
addition to the 𝑅⃗ 𝑗 vector, which connects the positions of the two, generic
displacement vectors 𝑢⃗𝑖 and 𝑢⃗ 𝑗 are also represented.

Referring to Figure 33, the central force that the atom 𝑖 experiences when it interacts
with the 𝑗-th atom is:

𝐹⃗ 𝑗 = 𝐾 𝑗
[︁
𝑅̂ 𝑗 ·

(︁
𝑢⃗ 𝑗 − 𝑢⃗𝑖

)︁ ]︁
𝑅̂ 𝑗 , (34)

where 𝑅̂ 𝑗 = 𝑅⃗ 𝑗/|𝑅⃗ 𝑗 | and 𝑢⃗ 𝑗 , 𝑢⃗𝑖 are displacement vectors. 𝐾 𝑗 is the coupling constant
that quantifies the strength of the interaction between the two atoms. The equation of
motion for atom 𝑖 is therefore:

𝑚
𝑑2𝑢⃗𝑖

𝑑𝑡2
=

∑︁
𝑗

𝐹⃗ 𝑗 , (35)

where the summation runs on the nearest and next nearest neighbors4 of 𝑖 and thus
becomes:

𝑚
𝑑2𝑢⃗𝑖

𝑑𝑡2
= 𝐾

∑︁
𝑗 ′

(︁
𝑢⃗ 𝑗 ′ − 𝑢⃗𝑖

)︁
+ 𝐾′

∑︁
𝑗 ′′

(︁
𝑢⃗ 𝑗 ′′ − 𝑢⃗𝑖

)︁
.

4According to the numbering in Figures 4a or 9a.
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Index 𝑗 ′ runs on first neighbors, while 𝑗 ′′ on second neighbors.
At this point it is assumed 𝑅⃗𝑖 as the origin and that the displacement vector of the

𝑗-th atom at position 𝑅⃗ 𝑗 is of the form

𝑢⃗ 𝑗 = 𝐴⃗𝑒
𝑖

(︂
𝑅⃗ 𝑗 ·𝑞⃗−𝜔𝑡

)︂
,

with 𝑅⃗ 𝑗 = (𝑥 𝑗 , 𝑦 𝑗 ), 𝐴⃗ = (𝐴𝑥 , 𝐴𝑦), 𝑞⃗ = (𝑞𝑥 , 𝑞𝑦). By inserting 𝑢⃗𝑖 = 𝐴⃗𝑒−𝑖𝜔𝑡 into Eq.(35):

𝑚
𝑑2𝑢⃗𝑖

𝑑𝑡2
= −𝑚𝜔2 𝐴⃗𝑒−𝑖𝜔𝑡 =

∑︁
𝑗

𝐹⃗ 𝑗 . (36)

We now need to explicitly calculate all the forces acting on atom 𝑖. We give the
first force acting in the hexagonal scheme, as an example:

𝐹⃗1 = 𝐾
[︁
𝑅̂1 · (𝑢⃗1 − 𝑢⃗𝑖)

]︁
𝑅̂1 =

= 𝐾

[︃
𝑅̂1 ·

(︃
𝐴⃗𝑒

𝑖

(︂
𝑅⃗ 𝑗 ·𝑞⃗−𝜔𝑡

)︂
− 𝐴⃗𝑒−𝑖𝜔𝑡

)︃]︃
𝑅̂1 =

= 𝐾

[︂(︂
𝑒𝑖𝑅⃗1𝑞⃗ − 1

)︂ (︁
𝑅̂1 · 𝑢⃗𝑖

)︁ ]︂
𝑅̂1 =

= 𝐾

[︄ (︁
𝑒𝑖𝑎𝑞𝑥 − 1

)︁
(1, 0)

(︄
𝐴𝑥

0

)︄]︄
𝑒−𝑖𝜔𝑡 ,

where 𝑅⃗1 = 𝑎(1, 0) and 𝑅̂1 = (1, 0).
Once all the forces have been calculated, we substitute them within Eq.(36) and

thus we obtain the dynamic vector equation:

𝜔2𝐴𝜉 =
∑︁
𝜒

𝐷𝜉𝜒𝐴𝜒 , 𝜉, 𝜒 = (𝑥, 𝑦) . (37)

From this the four components of the dynamic matrix are derived:(︄
𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑦𝑥 𝐷𝑦𝑦

)︄
. (38)

We calculate phonon dispersion frequencies from the eigenvalues of that matrix:

𝜔2
+/− =

𝐷𝑥𝑥 + 𝐷𝑦𝑦

2
±

√︄(︃
𝐷𝑥𝑥 − 𝐷𝑦𝑦

2

)︃2
+ 𝐷𝑥𝑦𝐷𝑦𝑥 . (39)

B Taylor Expansions

The generic Taylor expansion for the potential in Eq.(1) is as follows:

𝑉tot = 𝑉0+
∑︁
𝑖𝜉

Π𝜉𝑖𝑢𝜉𝑖 +
1
2!

∑︁
𝑖 𝑗 ,𝜉 𝜒

𝐷𝜉𝑖 ,𝜒 𝑗
𝑢𝜉𝑖𝑢𝜒 𝑗

+ 1
3!

∑︁
𝑖 𝑗 𝑘,𝜉 𝜒𝜁

Ψ𝜉𝑖 ,𝜒 𝑗 ,𝜁𝑘𝑢𝜉𝑖𝑢𝜒 𝑗
𝑢𝜁𝑘 +𝑜(𝑢4) , (40)

where 𝑖 = 1, . . . , 𝑁 runs on the lattice nuclei, 𝑗 and 𝑘 run on the nearest and next nearest
neighbors of the 𝑖-th nucleus. Greek letters are indices running on the three spatial
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coordinates: 𝜉, 𝜒, 𝜁 = 𝑥, 𝑦, 𝑧, while 𝑢𝜉𝑖 represents the displacement from equilibrium of
the 𝑖-th nucleus in the 𝜉 direction. The constant term is set to zero; the first-order term
is also zero when evaluating the derivatives at equilibrium. We define:

𝑉2 ≡ 1
2!

∑︁
𝑖 𝑗 ,𝜉 𝜒

𝐷𝜉𝑖 ,𝜒 𝑗
𝑢𝜉𝑖𝑢𝜒 𝑗

, 𝑉3 ≡ 1
3!

∑︁
𝑖 𝑗 𝑘,𝜉 𝜒𝜁

Ψ𝜉𝑖 ,𝜒 𝑗 ,𝜁𝑘𝑢𝜉𝑖𝑢𝜒 𝑗
𝑢𝜁𝑘 ,

where 𝐷𝜉𝑖 ,𝜒 𝑗
has already been defined in Eq.(6) and

Π𝜉𝑖 ≡
(︃
𝜕𝑉tot
𝜕𝑢𝜉𝑖

)︃|︁|︁|︁|︁
eq
, Ψ𝜉𝑖 ,𝜒 𝑗 ,𝜁𝑘 ≡

(︃
𝜕3𝑉tot

𝜕𝑢𝜉𝑖𝜕𝑢𝜒 𝑗
𝜕𝑢𝜁𝑘

)︃|︁|︁|︁|︁
eq
. (41)

We rewrite the total potential in Eq.(1) as

𝑉tot =
1
2

𝑁∑︁
𝑖=1
𝑉𝑖 𝑗 , 𝑉𝑖 𝑗 ≡

∑︁
𝑗

𝐾𝑖 𝑗

2

(︂
𝑟𝑖 𝑗 − 𝑟eq

𝑖 𝑗

)︂2
. (42)

As we are going to calculate the derivatives of the interaction potential between a
pair of atoms 𝑉𝑖 𝑗 , it is useful to simplify the formalism of each individual term of the
derivation in the following way,

𝑉𝜉𝑖 𝜒 𝑗
≡

𝜕2𝑉𝑖 𝑗

𝜕𝜉𝑖𝜕𝜒 𝑗

|︁|︁|︁|︁|︁
𝑒𝑞

𝑢𝜉𝑖𝑢𝜒 𝑗
, 𝑉𝜉𝑖 𝜒 𝑗 𝜁𝑘 ≡

𝜕3𝑉𝑖 𝑗

𝜕𝜉𝑖𝜕𝜒 𝑗𝜕𝜁𝑘

|︁|︁|︁|︁|︁
𝑒𝑞

𝑢𝜉𝑖𝑢𝜒 𝑗
𝑢𝜁𝑘 ,

in order to compactly highlight all the development terms that need to be calculated
individually for the two-dimensional case.
The second-order term is:

𝑉2 =
1
2

𝑁∑︁
𝑖=1

[︄
𝑉𝑥𝑖2 +𝑉𝑦𝑖2 + 2𝑉𝑥𝑖𝑦𝑖 +

∑︁
𝑗≠𝑖

(︂
𝑉𝑥 𝑗𝑥𝑖 +𝑉𝑦 𝑗 𝑦𝑖 +𝑉𝑦 𝑗𝑥𝑖 +𝑉𝑥 𝑗 𝑦𝑖

)︂]︄
. (43)

Instead, the third-order term is:

𝑉3 =
1
6

𝑁∑︁
𝑖=1

{︄
𝑉𝑥𝑖3 +𝑉𝑦𝑖3 + 3𝑉𝑦𝑖𝑥𝑖2 + 3𝑉𝑦𝑖2𝑥𝑖+

+
∑︁
𝑗≠𝑖

[︃
2
(︂
𝑉𝑥 𝑗𝑥𝑖2 +𝑉𝑦 𝑗 𝑦𝑖2 +𝑉𝑦 𝑗𝑥𝑖2 +𝑉𝑥 𝑗 𝑦𝑖2 + 2𝑉𝑦 𝑗𝑥𝑖𝑦𝑖 + 2𝑉𝑥 𝑗𝑥𝑖𝑦𝑖

)︂
+

+𝑉𝑥 𝑗2𝑥𝑖 +𝑉𝑦 𝑗2𝑦𝑖 +𝑉𝑦 𝑗2𝑥𝑖 +𝑉𝑥 𝑗2𝑦𝑖 + 2𝑉𝑥 𝑗 𝑦 𝑗𝑥𝑖 + 2𝑉𝑥 𝑗 𝑦 𝑗 𝑦𝑖

]︃}︄
.

(44)

For any kind of pair-interaction potential (Eq.(1) is just an example, Lennard-Jones
interaction is another) there are no coupling terms involving three or more distinct atoms
simultaneously and so 𝑉tot has nonzero terms containing only two distinct or equal
particles, labelled by indices 𝑖 and 𝑗 .

Now it is convenient to calculate separately all derivatives of 𝑉𝑖 𝑗 , considering
𝜉 ∈ (𝑥, 𝑦):
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• First order:

𝜕𝑉𝑖 𝑗

𝜕𝜉𝑖
=

∑︁
<𝑖, 𝑗>

𝐾𝑖 𝑗

(︂
𝑟𝑖 𝑗 − 𝑟𝑒𝑞𝑖 𝑗

)︂ (︁
𝜉𝑖 − 𝜉 𝑗

)︁
𝑟𝑖 𝑗

.

• Second order:

𝜕2𝑉𝑖 𝑗

𝜕𝜉2
𝑖

=
∑︁
<𝑖, 𝑗>

𝐾𝑖 𝑗

{︄(︃
𝜉𝑖 − 𝜉 𝑗
𝑟𝑖 𝑗

)︃2
+
𝑟𝑖 𝑗 − 𝑟𝑒𝑞𝑖 𝑗
𝑟𝑖 𝑗

[︄
1 −

(︃
𝜉𝑖 − 𝜉 𝑗
𝑟𝑖 𝑗

)︃2
]︄}︄

;

𝜕2𝑉𝑖 𝑗

𝜕𝜉 𝑗𝜕𝜉𝑖
=

∑︁
<𝑖, 𝑗>

𝐾𝑖 𝑗

{︄
−

(︃
𝜉𝑖 − 𝜉 𝑗
𝑟𝑖 𝑗

)︃2
+
𝑟𝑖 𝑗 − 𝑟𝑒𝑞𝑖 𝑗
𝑟𝑖 𝑗

[︄(︃
𝜉𝑖 − 𝜉 𝑗
𝑟𝑖 𝑗

)︃2
− 1

]︄}︄
;

𝜕2𝑉𝑖 𝑗

𝜕𝑥𝑖𝜕𝑦𝑖
=
𝜕2𝑉𝑖 𝑗

𝜕𝑦𝑖𝜕𝑥𝑖
= −

𝜕2𝑉𝑖 𝑗

𝜕𝑥 𝑗𝜕𝑦𝑖
= −

𝜕2𝑉𝑖 𝑗

𝜕𝑦 𝑗𝜕𝑥𝑖
=

=
∑︁
<𝑖, 𝑗>

𝐾𝑖 𝑗

{︄ (︁
𝑥𝑖 − 𝑥 𝑗

)︁ (︁
𝑦𝑖 − 𝑦 𝑗

)︁
𝑟2
𝑖 𝑗

[︄
1 −

𝑟𝑖 𝑗 − 𝑟𝑒𝑞𝑖 𝑗
𝑟𝑖 𝑗

]︄}︄
.

• Third order:

𝜕3𝑉𝑖 𝑗

𝜕𝜉3
𝑖

=
𝜕3𝑉𝑖 𝑗

𝜕𝜉2
𝑗
𝜉𝑖

= −
𝜕3𝑉𝑖 𝑗

𝜕𝜉 𝑗𝜕𝜉
2
𝑖

=

=
∑︁
<𝑖, 𝑗>

3𝐾𝑖 𝑗

(︄
𝜉𝑖 − 𝜉 𝑗
𝑟2
𝑖 𝑗

)︄ {︄
1 −

(︃
𝜉𝑖 − 𝜉 𝑗
𝑟𝑖 𝑗

)︃2
+
𝑟𝑖 𝑗 − 𝑟𝑒𝑞𝑖 𝑗
𝑟𝑖 𝑗

[︄(︃
𝜉𝑖 − 𝜉 𝑗
𝑟𝑖 𝑗

)︃2
− 1

]︄}︄
;

𝜕3𝑉𝑖 𝑗

𝜕𝑥2
𝑖
𝜕𝑦𝑖

=
𝜕3𝑉𝑖 𝑗

𝜕𝑦 𝑗𝜕𝑥 𝑗𝜕𝑥𝑖
=

𝜕3𝑉𝑖 𝑗

𝜕𝑥2
𝑗
𝜕𝑦𝑖

= −
𝜕3𝑉𝑖 𝑗

𝜕𝑦 𝑗𝜕𝑥
2
𝑖

= −
𝜕3𝑉𝑖 𝑗

𝜕𝑥 𝑗𝜕𝑥𝑖𝜕𝑦𝑖
=

=
∑︁
<𝑖, 𝑗>

𝐾𝑖 𝑗

(︄
𝑦𝑖 − 𝑦 𝑗
𝑟2
𝑖 𝑗

)︄ {︄
1 − 3

(︃
𝑥𝑖 − 𝑥 𝑗
𝑟𝑖 𝑗

)︃2
+
𝑟𝑖 𝑗 − 𝑟𝑒𝑞𝑖 𝑗
𝑟𝑖 𝑗

[︄
3
(︃
𝑥𝑖 − 𝑥 𝑗
𝑟𝑖 𝑗

)︃2
− 1

]︄}︄
;

𝜕3𝑉𝑖 𝑗

𝜕𝑥𝑖𝜕𝑦
2
𝑖

=
𝜕3𝑉𝑖 𝑗

𝜕𝑥 𝑗𝜕𝑦 𝑗𝜕𝑦𝑖
=

𝜕3𝑉𝑖 𝑗

𝜕𝑦2
𝑗
𝜕𝑥𝑖

= −
𝜕3𝑉𝑖 𝑗

𝜕𝑥 𝑗𝜕𝑦
2
𝑖

= −
𝜕3𝑉𝑖 𝑗

𝜕𝑦 𝑗𝜕𝑦𝑖𝜕𝑥𝑖
=

=
∑︁
<𝑖, 𝑗>

𝐾𝑖 𝑗

(︄
𝑥𝑖 − 𝑥 𝑗
𝑟2
𝑖 𝑗

)︄ {︄
1 − 3

(︃
𝑦𝑖 − 𝑦 𝑗
𝑟𝑖 𝑗

)︃2
+
𝑟𝑖 𝑗 − 𝑟𝑒𝑞𝑖 𝑗
𝑟𝑖 𝑗

[︄
3
(︃
𝑦𝑖 − 𝑦 𝑗
𝑟𝑖 𝑗

)︃2
− 1

]︄}︄
.

Evaluating Eq.(43) and Eq.(44) at equilibrium and taking into account the specific
geometry of the lattice, the formulas given in Sections 2 and 3 are derived.

C Error Estimation

The MD code integrates the equations of motion of each atom by applying the RKF
method, which proceeds in𝑀 integration steps. At each step it computes some quantities,
such as 𝑉tot, 𝑉2 and 𝑉3. Let us generically call 𝑝 one of these data. Clearly a few 𝑝𝑖 are
closely correlated within a certain correlation time. Therefore, if we want to estimate an
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average of 𝑝𝑖 values by applying, for example, Eq.(27), we cannot computed the standard
deviation using the usual formula, because 𝑝𝑖 values are not independent data.

What we can do is to divide 𝑀 into 𝑁Blk = 30 blocks. So each block contains
𝐿 = ⌊ 𝑀

𝑁Blk
⌋ integration steps of the RKF algorithm.

At this point within each block we calculate the average:

⟨𝑝⟩ 𝑗 =
1
𝐿

( 𝑗+1)·𝐿∑︁
𝑘= 𝑗 ·𝐿

𝑝𝑘 , (45)

where index 𝑗 = 0, . . . , 𝑁Blk − 1 identifies the 𝑗-th block. We must pay attention to
the fact that the last block may not contain exactly 𝐿 elements. For the final block the
summation in Eq.(45) runs from 𝑁Blk − 1 to 𝑀 .

At this point we are able to calculate the average of the averages in each block:

⟨𝑝⟩ = 1
𝑁Blk

𝑁Blk∑︁
𝑗=1

⟨𝑝⟩ 𝑗 ⟨𝑝2⟩ = 1
𝑁Blk

𝑁Blk∑︁
𝑗=1

⟨𝑝⟩2
𝑗 . (46)

Assuming that each block is long enough with respect to the correlation time, the
averages in Eq.(45) are independent data and we can finally use them to estimate a
standard deviation:

StdDev𝑝 =

√︄
⟨𝑝2⟩ − ⟨𝑝⟩2

𝑁Blk − 1
. (47)

In practice, we use this statistics for quadratic quantities, such as in Eq.(27). In
other terms, 𝑝(𝑡) = 𝑣2(𝑡). Applying standard error propagation, the quadratic average
and the standard deviation are:

⟨𝑣⟩ =
√︁
⟨𝑝⟩ , StdDev𝑣 =

1
2
√︁
⟨𝑝⟩

√︄
⟨𝑝2⟩ − ⟨𝑝⟩2

𝑁Blk − 1
. (48)

In Section 5, we use these equations to evaluate 𝜎Δ𝑉2 and 𝜎Δ𝑉3 , and to estimate the
corresponding error bars.
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[7] G.P. Srivastava, The physics of phonons (A. Hilger, Bristol Philadelphia New York,
1990).

37

http://materia.fisica.unimi.it/manini/theses/miglio.pdf
http://materia.fisica.unimi.it/manini/theses/miglio.pdf

	Introduction
	The Harmonic Approximation
	One Dimensional Chain
	Two-Dimensional Crystal, Square Lattice
	Two-Dimensional Crystal, Hexagonal lattice

	Third-Order Taylor Expansions
	Expansion Verification
	Second-Order Terms
	Third-Order Terms
	Higher-Order Terms

	Numerical Simulations
	Square Lattice
	Point-X Zone-Edge Phonon
	Point-M Zone-Edge Phonon
	Combination Of Phonons

	Hexagonal Lattice
	Point-K Zone-Edge Phonon
	Point-M' Zone-Edge Phonon
	Combination Of Phonons


	Conclusions
	Dynamical Matrix Method
	Taylor Expansions
	Error Estimation
	References

