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Abstract

We compare the effects of geometric anharmonicity on bidimensional crystals
characterized by perfectly harmonic springs: the square and the hexagonal lat-
tice. In particular, we evaluate the difference between the total potential energy
of the system and the second- and third-order of its Taylor expansion in atomic
displacements. The anharmonic terms are nonzero, despite the harmonicity of the
atomic interactions, simply due to the lattice geometry. To evaluate the geomet-
ric anharmonicity quantitatively in realistic vibration conditions, we simulate the
two crystals with a molecular-dynamics code. We excite single phonons at points
of high symmetry at the edge of the first Brillouin zone, and we observe that,
due to symmetry, the third-order term vanishes: the fourth-order term dominates
anharmonicity. When we excite a random combination of phonons, instead, the
third-order term becomes the leading one.
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1 Introduction

Harmonic springs produce harmonic crystals only when connecting atoms in one dimen-
sional chains. In higher dimensions, however, they interestingly generate anharmonic
crystals. This phenomenon is known as ”geometric anharmonicity” [1, 2].

We study examples of crystal lattices consisting of atoms interacting via a harmonic
pairwise potential of the form:

N ..
V=3 200 L (=) ()
J

Here N is the number of atoms, the index j runs on the first and second nearest
neighbors to the i-th atom and K;; represent the force constant that quantifies the strength
of the interaction; r;; is the instantaneous distance between atoms i and j and rl.ejq is their
distance when all atoms sit at the equilibrium perfect-lattice configuration:
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where & = x,y, z and £°1 = x4, y¢9, 7%

In the Born-Oppenheimer adiabatic scheme [3], we study the dynamics of nuclei
independently of electronic motion, which is supposed to contribute to generate the
interatomic potential Viy.

It is evident [3,4,5] that the total potential energy of a linear chain of atoms, forced
to move in one dimension with harmonic pairwise interactions, coincides exactly with
its own second-order Taylor expansion as long as no atomic displacements exceed one
lattice constant a = |xl. x . Indeed, in one dimension r;; = x;; = |x; — x;4+1| and the
potential in Eq.(1) becomes.

Vo= 53 =l = = 53 (et = - 4
ot = 7 2 Xi— Xl —a)" =3 2 Xigl =X —a)” , 4)
as long as |x;4+1 — x;| > 0. Eq.(4) is a sum of polynomials of second degree: they have
zero partial derivatives if the order of derivation exceeds the degree of the polynomial
itself [6]. This is why the one-dimensional potential coincides with its second-order
expansion and the resulting crystal is harmonic.

However, in higher dimensions this argument no longer holds. For example, J.
Miglio [2] carried out a preliminary investigation on how the nonpolynomial function
for the distance r;; (2) affects the Taylor expansion in two dimensions, introducing terms
of order greater than the second. In particular, he quantified the effects of geometric
anharmonicity for a two-dimensional square crystal by calculating the difference between
the exact potential energy of the system, obtained numerically through a molecular
dynamics (MD) code, and its analytical second-order Taylor expansion.



The purpose of this thesis is to extend this research, by obtaining an explicit
expression for the third-order expansion and comparing it to the exact potential. In
addition, we conduct the same study in parallel for a lattice with hexagonal geometry.

This thesis is organized as follows: In Section 2, we recall the theory and known
results for the harmonic lattice dynamics. In particular, we derive the second-order
terms of the Taylor expansion of Vi, and we discuss the phonon dispersion curves for
both geometries. Next, we report the third-order terms and a sketch of their derivation
in Section 3. In Section 4 we verify the correctness of the analytical Taylor expressions
previously obtained, by comparing them with the exact total potential energy, for small
deviations away from the equilibrium geometry. Finally, in Section 5 we excite specific
normal modes of oscillation of the two types of crystal and also combinations of several
of them in molecular dynamics (MD) simulations, to investigate the effects of geometric
anharmonicity in different contests.

2 The Harmonic Approximation

In this section we recall the main results of the harmonic theory of phonons. The phonon
dispersion laws are obtained from the second order Taylor expansion of V.

It is convenient to express all physical quantities as combinations of the main model
constants, namely a, m and K, as listed in Table 1.

To obtain the harmonic approximation, we expand Vi, up to the second order in

the displacements from the equilibrium position ug, = & — & :
1
Vi = Vo+Va+o(u®) = Vo + 3 Z Dy, gty +0() ()
i£,jx

where &, y = x,y,z; indexes i, j = 1,2,..., N label individual unit cells of the crystal,
which, both for the square lattice and the hexagonal lattice, contain one atom each. Linear

Physical quantity | Units

length a
mass
spring constant K
wave vector a!
force Ka
energy Ka?
time m/K
frequency \/W
velocity a\K/m

Table 1: Natural model units for all physical quantities in this work, expressed
as unique combinations of the three main parameters that characterise the
model: a,m, K.



terms vanish because the expansion is carried out around the equilibrium geometry. The
constant term Vj is irrelevant to the study of lattice dynamics and vanishes for the specific
potential in Eq.(1).
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is the dynamical matrix of the crystal in real space. Using this matrix we can set up the
classical equations of motion for the dynamics of the nuclei:

miigi = - Z Dfi’Xquj . (7)
Jx

Given the lattice traslation vectors i?i and substituting in Eq.(7) a solution of the form

(1) = AGw)el R ®)
we obtain o
—mszg = — Z Dgi,Xje_lq.(Ri_Rj)AX

Jx
Defining the dynamical matrix of the crystal in reciprocal space as

Dey(@ = Y Dgyye TR ©)
J

we can solve the following eigenvalue equation, in order to get the normal phonon modes
of the crystal we are studying:

D¢ (§) = mwse, || =0 . (10)

The secular equation (10) produces d eigenvalues for each g, where d is equal to
the problem dimensionality. So, as ¢ varies within the first Brillouin zone (1%BZ),
d phononic branches are formed, whose frequencies are described by the functions
w(q,d).

Appendix A provides more detail on this standard method for calculating phonon
dispersion frequencies for the d = 2 dimensional case.
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Figure 1: A monoatomic linear chain describing longitudinal phonons, due
to the atoms being obliged to oscillate along the chain direction, in one
dimension only. Periodic boundary conditions such that the displacements

un+1 = up are applied, to avoid an abrupt termination and preserve lattice
symmetry.

2.1 One Dimensional Chain

In this subsection we analyze a linear chain of equal atoms, such as the one in Figure 1.

The derivation of the longitudinal oscillation frequency as a function of ¢ is an
elementary exercise [3,4,5]. The result is:

K
w(q) = 24/ 2 )sin(%)‘ . (11)
m

Figure 2 reports the dispersion relation (11) in an extended-zone scheme.

In the long wavelength limit (ga < 1) it is possible to derive the expression for
the sound velocity in the chain v;:

K K
wR—aqg=1v5q, Vs =4/ —a . (12)
m m

K — w(q)
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3 0 : x
q [1/a]

Figure 2: Oscillation frequencies of the linear chain as a function of the
wavevector g. The curve is extended even outside the 1*BZ [-Z, 2], greyed
region, to highlight the translational symmetry in g space.
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2.2 Two-Dimensional Crystal, Square Lattice

We start with the two-dimensional square lattice already investigated in Ref.[2]. Ap-
pendix B details how to calculate the Taylor expansion of the potential in Eq.(1). Unlike
the one-dimensional chain, the two-dimensional crystal has two branches of acoustic
phonons, which are labelled as the lower or transverse (T) acoustic branch and the upper
or longitudinal (L) acoustic branch!.

In the square lattice, at equilibrium, the nearest neighbors are distant a and the
second neighbors are separated by a distance a V2. This is evident in Figure 3. For this
reason, the interaction between the latter is expected to be weaker and characterized by
a constant K’<K, where K is the force constant between nearest neighbors. Primitive
vectors in the direct lattice are @; = a(1,0) and @, = a(0, 1), while those of the reciprocal
lattice are Z;I = %’r(l, 0) and 52 = %”(0, 1).

Itis useful to fix a convention for the numbering of the first and the second neighbors
of the i-th atom. We adopt the numbering in Figure 4a.

Figure 4b reports the first Brillouin zone, at the center of the reciprocal lattice. The
I3'BZ is drawn in detail in Figure 5, where dots identify special symmetry points.

The second-order Taylor expansion of Eq.(1) was calculated by J. Miglio [2] and
has the following form:

N 2 4

1 ,

Vs = 5 El {2 (K +K) (uﬁ + ui) -K El Uy, + 23 Uy iy, |+
i= J= I=
(13)
8
K’ ;
> ]EZS [(—1)J (”xj'”yi + ”yf”xf) - (uxfuxf +u”””)] } '

Referring to the method outlined in Eqs.(5-10), the harmonic dispersion laws for normal
modes of crystal vibration are:

+
Lo (14)

K a\?2 (K’ 170
+2— l(sin2 4 _ sin? qi) + (? sin ga sin an) ] } .

K. ) a K’
Wi/ = {2Z [sm2 % + sin® % = (1 = cos gyacosgya)

m 2 2

The two solutions represent the frequencies of the longitudinal and transverse vibration,
respectively:
wy = WL, , wW_ =wT .

They are depicted in Figure 6.

Since the two-dimensional plots of Figure 6 are not easily readable, it is convenient
to represent the frequencies as g varies along the symmetry directions in Figure 5, as it
is done in Figure 7.

IThey are named after the fact that the eigenvectors of the dynamical matrix are approximately
perpendicular and parallel to the phonon wavevector ¢, respectively.
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Figure 3: Square lattice with nearest (black springs) and next nearest (light
gray springs) neighbors interactions. The lattice step is a. Periodic boundary
conditions are supposed to be applied and then the crystal is regarded as
infinite.

Considering Eq.(14) and calculating the limit for |g| — 0 and then dividing by
|g|, we derive the sound velocities in the two-dimensional square crystal. It is useful to
represent g in polar coordinates, g, = |g| cos 6 and ¢, = |g|sin 6.

2 1
1 K 1 K’ K\?
=0, == +— £/~ cos2(20) + [ —] sin*(26 — 15
VLT = Uy) 7+t % \/4cos( ) (K) sin“(26) a(m) (15)
are nonzero for any K’ > 0. In the special case K’ = 0, the square-lattice instability
is evident from the vanishing of certain sound velocities in specific g directions, for
example the transverse vt for 6 = 0. If K’ = %K , instead, we obtain two isotropic sound
velocities:

1 K\?
UL/T = 1+ E a (—) . (16)
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(a) Direct Lattice (b) Reciprocal Lattice

Figure 4: Panel a: the numbering convention for the j-th atom surrounding
the i-th atom in the lattice. In panel b, instead, we show the reciprocal lattice
and the 19'BZ.

Figure 5: The 13'BZ of the square lattice. It has the shape of a square of
side 27” The high-symmetry points have the following coordinates (g, gy)
in reciprocal space: I' = (0,0); X = Z(1,0); M = Z(1,1).
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Figure 6: The two frequency dispersion laws of Eq.(14) as a function of g

inside the reciprocal square lattice with g € [-Z, 2] and ¢y € [-Z, 7],

namely the 19'BZ. wy is reported on the left, while wt on right.
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Figure 7: Phonon dispersion curve along the path I' — X — M — I" inside the
13'BZ, as drawn in Figure 5. The fact that the slope of the dispersion curves is
identical when arriving to I" from different directions is an indication of the
isotropy of the quadratic expansion terms for K’ = 0.5K.
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2.3 Two-Dimensional Crystal, Hexagonal lattice

Unlike the square geometry, in the hexagonal crystal the number of nearest and next
nearest neighbors is 6 and their distances from the i-th atom are a and V3a, respectively.
As before, the two types of interaction are characterized by K and K’ <K. Figure 8 shows
aregion of a hexagonal lattice, where only the springs connecting the nearest neighbors
are drawn. Figure 9a describes the numbering convention for neighbors adopted in this

.
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2 S S S S

v

Figure 8: Hexagonal lattice with periodic boundary condition applied. In
order to make the picture clearer, only the springs describing the interaction
between nearest neighbors are depicted.

thesis. Figure 9b reports the reciprocal lattice with the 13'BZ. They are constructed as
follows. First, we identify two primitive lattice vectors in direct space:

1 V3

51 :Cl(l,O) s azza _577 (17)
Then we calculate the corresponding ones in reciprocal space?
> dy X 2 2 1 > Zxa 2 2
blzznf’z—f:—”(,—), bzzzn%:—”(o,—), (18)
|a1 ><a2| a \/g |a1 ><612| a \/g

that generate the reciprocal lattice, Figure 9b. The 19'BZ can be obtained by drawing the
bisector of the lines joining the nearest neighbors in the reciprocal lattice [3].

Referring to Appendix B, we calculate the second-order term of the Taylor expan-

20ne can check the property b; - @ j=2m6;;.

11
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Figure 9: Direct (a) and reciprocal (b) hexagonal lattice. Atoms from 1 to 6
are nearest neighbors to the i-th; from 7 to 8 they are second neighbors.

sion of Vi:

N 2
1 ,
V=3 2{3 (K+K) (12 402 ) =K Y g+
. <

6
K .
+ s Z(—l)]\/g (uxjuyl. + uyjuxi) - (uxjuxi + 3uyjuyi) + (19)
=3
K[ &2 .
-K Z Uy Uy, + T Z(—l)f\/g (uxjuyi + uyjuxi) - (3uxjuxi + uyjuyi) ]} .
=7 =9

Following the method sketched in Appendix A, we derive the harmonic phonon
oscillation frequencies. For simplicity, we take into account only the interaction between
first neighbors (K’ = 0).

[k V3
Wi/ = E{3 — cos(gya) — 2 cos (q;a) cos ( gya) +

+ [cosz(qxa) + cos? (M) cos’ (@) + (20)

2 2

1
X \/§ a X \/§ a % ?
— 2 cos(gxa) cos (qza) cos ( ;]y + 3 sin’ (%) sin’ % ] )

Using Eq.(20) one can once again graphically represent the longitudinal and trans-
verse phonon dispersion curves, as in Figure 10.

Evaluating the limit for |g| — 0 yields two isotropic sound velocities, longitudinal

V3 [ 1 (k)
UL)T = Vy/- = 7 1+ 5 a (Z) . 21

12

and transverse:



The phonon dispersion curves are also reported along the high-symmetry directions

in Figure 11. These symmetry paths can be seen in Figure 12.
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Figure 10: Phonon dispersion curves for the hexagonal lattice with nearest

neighbors only (K’ = 0), Eq.(20), the g vector spanning the rectangle g, €
_4n 4An _2n 2x; i st

[-35,35] and gy € [ o’ \/§a]’ which covers the 13'BZ enterely.
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Figure 11: First Brillouin zone of the two-dimensional hexagonal lattice. It
has the shape of a regular hexagon. The special points in g-space have the
following coordinates (g, gy): I' = (0,0); K = 27”(%,0); M = 27”(%,

L)-
2 237
M’ ==E(0

1
L.
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Figure 12: Hexagonal lattice phonon dispersion curves along the high-
symmetry directions in the 1%BZ sketched in Figure 11. Only nearest-
neighbors interaction is taken into account (K’ = 0). The sound velocity

isotropy manifests itself in the identical slope at I" while arriving from differ-
ent directions.

3 Third-Order Taylor Expansions

Taking advantage of the calculations made in Appendix B, we derive term V3 in the

expansion of the total potential of Eq.(1). The result for the square lattice, with reference
to Figure 4 for the labelling of neighbour atoms j, is:

2K 1
6 Z{ [Z( I)J (—ux 2uy Uy, + = 7 y Uy, +ijuy,uy,) +

J=

1
+ Z( 1)J (—uyj uy, 2”xjuxluy, + = > x Uy, + Uy Uy Uy, | |+

j=3

8
K’ 3 1,
2—2 (-1)/ 3uyjuy +uyju + 2ux Uy lty, + 5 > y Uy = Sl Uy, = Uy, +

j=5

5 3 1
2 2 2 2

( ~ 2 Suy uy, — uyu ¥ = 2uy Uy Uy, — zu Uy, + = 7 Wy Uy, + Uy Uy Uy, ,

(22)
where (#) Z is a ’sign rule”, i.e. it takes value +1 depending on j.

The third-order term for the hexagonal geometry, referring to Figure 9 for the

14



numbering of the neighbouring atoms j, is:
62{ Z( 1)1( duy Uy tty, — 2uxluy +u U +2uxluy]uyl)+

2j-9\* 5\ (9 5 9 5 >
( J ) ——)( Uy, — Sty Uy, — uy __uzj”xl""_uzjuxl'+_”Xj”yj”yi)+

2 412 7 >
] =3
9/2 — J 1 2 3 2 1 ) 1
( 9/2 ]l) (_uyfuy + Ux;Ux; Uy, + 2”)’] 4 y Uy, — Zuxjuyi - Euxjuyjuxi +

\/_ Z( I)J( Aty Uy Uy, — 2uyu +u Uy, +2uy, uyjuxl)+
3a
12

K’ 2j-21\* 5\(3 , 1, 3, 1, 1
+ % Z[(( 3 ) — Z) (Eule/txi + Uy Uy Uy, + Eule/lyi Zulelxi - letyjblxi — Euxjuyjuyi +
Jj=9

21/2-7\(9 5 5, 9

- o\2 . 0\ 2
. . 2j-9 5 9/2-j (2j-2I 5 21/2-j
In this expression (T) -3 w |=5—) —3-and BT/a=y are sign rules.

4 Expansion Verification

In this section a MD code, which simulates the previously described systems and calcu-
lates Vo, namely a numerical evaluation of the potential in Eq.(1), is exploited to verify
if the Taylor expansion terms obtained in Sections 2 and 3 are correct.

In order to confirm the correctness of the V, and V3 expressions, we conduct a
few tests. We fix the initial pattern of deviations from equilibrium once and for all. In
particular, we set an array 7:7 that contains information about the initial displacements
from equilibrium of all atoms. For example, we randomly choose such deviations in
the [—0.5,0.5] interval. Each displacement is then scaled by a factor «, a small length:
usually || < a.

In order to give a precise meaning to «, the array ?7 of the starting displacements
of dimension 2N is normalized:

L
n=-—-, (24)
171l
where ||727|| = 2121\{ 772 Now 7 is a dimensionless array of unit norm, while « is a

length, that we can express in units of the lattice constant a.
We use the Bravais-lattice vector R; to identify the equilibrium position of the i-th
atom. The starting deviations from the equilibrium configuration will be described by:

g =af . (25)

For both geometries, square and hexagonal, periodic boundary conditions (PBCs)
are applied to a supercell: for the square lattice we take a (6a X 6a) supercell that

15



contains N = 36 atoms; for the hexagonal crystal the supercell is (6a x 3V3a) in size,
and contains N = 36 atoms too.

For each @, we record the values of Viy, V5, V3, in order to verify the following
leading a dependences:

¢ Vit ® Vo x a? ;

c AVa=Vig-VarVsxad;

e AV3 = Vigt— Vo — V3 x o, for a— 0.

4.1 Second-Order Terms

We first verify that the expressions in Eq.(13) and (19) are correct, by comparing V,
and Vi, plotted as a function of a? in Figure 13. We observe that the two quantities
are practically coinciding, since, for small @, V5 is the dominant term of the expansion.
As shown in the insets, where a broader range in « is explored, for large displacements
a =~ a, small deviations occur.

. —4
1.6-10 v ¢*+
. &
1.4-107* tot 4%°
2.0-10741
— 12-107 + V> —_
o~ o~
G _ T »
1.0-10 - 15-107%
X Square Lattice X
~ 0.8:107 ~
>~ 0.6-10- +* > 1010
S ’ + S
8 - 8
> 04-10 Ras >
o 0.5:107%1
02-107 #*
0.0 2 4 6 0.0
0.0 0210 04-10~% 0.6-10~* 0.8-10~% 1.0-10°* 00  02-1074 0.4-10* 0.6-10~% 0.8-10~% 1.0-10°
a? [a?] a? [a?]

Figure 13: Comparison between the second-order Taylor term V, and the
exact numerical value of Vi, obtained for a fixed random displacement of
unit norm, multiplied by an amplitude @, and reported as a function of o?.
Since V; is the leading term in the expansion, for both geometries in the limit
a — 0 these quantities coincide. The inset shows that deviations, representing
anharmonic terms, are quite small even for displacements « of the order of a
and even larger.

4.2 Third-Order Terms

A similar procedure is applied to the third-order terms V3, Eqs.(22) and (23), which are
compared with the totality of the anharmonic terms AV, = Vi, — V». Figure 14 shows
that in the limit @ — O these two quantities coincide, so the expressions (22) and (23) are
also validated. The prefactor of the o term, and even its sign, depends on the specific
initial configuration, which is picked in the choice of the random displacements. Also
in this test, for large @ ~ a, sizable deviations occur (see insets).

16
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Figure 14: Comparison of the third-order term V3, computed according to
Eq.(22) (square lattice, left) and (23) (hexagonal lattice, right), with AV, =
Viot — V2. The good agreement for small « indicates the correctness of the
expressions obtained. The disagreement between AV, and V3 observed for

~

larger @ ~ a (insets) is due to the former containing terms of order higher
than the third.

4.3 Higher-Order Terms

As a final check, in Figure 15 we verify that the leading contribution to the remainder
AV3 = Vior — Vo — V3 is proportional to a* for small @. As expected, for @ > 1 deviations
appear, see insets.

oo 0.0
* AV3 . AV3
-1-10°1
i —2.0-10-11 .
- ."0., Square Lattice 2010 o Hexagonal Lattice
o~ — )
G —2-10°11 '-... % .,
X % . E‘ _4.0-10-11 '...
o _3.10-u{ 00 ~... oo, o 00N, '...
. * .
< 701 *e < _6.0-10-11{ =02 e,
—4.10711 (] - . .
-0.2 . ~0.4 .
. . ° .
_5.10-11 . L -8.0:10"1 1 =06 . ..
0 10 20 30| 40 o 0 10 20 30 40 .

0.0

02-10% 04-10® 0.6-10% 08-10% 1.0-10°8
a* [a%]

02-10% 04-10°8

0.6-10"% 08-10° 1.0-10°%

a* [a%]

Figure 15: The remainder of the expansion truncated to third order, namely

AV3 = Viot — Vo — V3, exhibits a leading a? dependence for @ — 0.

5 Numerical Simulations

We now proceed to investigate the effect of the geometric anharmonicity on the dy-
namics. The MD code integrates the equation of motion? for the atoms in the crystal,
obtaining a numerically accurate time evolution of the positions 7; fori = 1, ..., N over

3The code adopts the Runge-Kutta-Fehlberg (RKF) method to integrate the resulting system of differ-
ential equations, with an adaptive time step to guarantee an accurate integration.

17



a predetermined time interval. Based on these dynamic variables, the code numerically
estimates the time evolution of V. J. Miglio [2] implemented a function to compute
V, according to Eq.(13) for the square lattice. We added three new functions: one to
calculate V; for the hexagonal crystal, Eq.(19); and two more functions that compute V3
in both geometries, Eqs.(22) and (23).

The dynamics of the system is purely Newtonian, it includes no dissipative terms.
We checked that the total energy is well conserved as it should. We simulate the
two systems, square and hexagonal, within the two supercells introduced in Section 4,
applying PBCs appropriately.

By default we run simulations with duration ze,g = 304/m/K. At the initial time
to = 0 a suitable starting configuration (not necessarily involving random displacements)
is set. As in Section 4 all atoms have a starting displacement i = a7} and zero velocity.
Therefore, initially the kinetic energy vanishes, and the potential energy is maximum.

To evaluate the time-averaged magnitude of AV, = Vi — V3, containing all anhar-
monic terms from the third order onward, we consider the following mean square:

1
/t;e“d AVy(1)? dt\’
Tav, = — . (26)
en

We evaluate oay, on a set of simulations all of the same duration, but charac-
terized by different amplitudes @ of the initial displacement. We report oay, (@) on
a bilogarithmic-scale graph. In this type of graph, a power law manifests itself in a
linear trend, whose slope gives the exponent of the underlying power law. The resulting
exponent provides information about which anharmonic term dominates in that specific
phonon excitation.

This study on oy, was done by J. Miglio [2] for the square lattice. In the present
thesis we have the possibility to study the new average magnitude

1
Ji ;e‘“‘ AV5(1)2dt |

TAV; = - ; (27)
en

of the deviation AV3 = Vi, — V> — V3 that contains all anharmonic terms from the fourth
order onward.

Since AV3 values calculated by the RKF method at different instants of integration of
differential equations are correlated within a certain correlation time, we cannot compute
the standard deviation of oay, using the usual formula, because the time average under
square root (27) is calculated on sampled values that are not independent. Therefore, in
Appendix C we explain how we estimate oay, and its error.

Given a general equilibrium lattice vector R = ndy + mad, withn,m € Z, a generic
phonon wave has the form 3

F(R) = AdfThi | (28)
where A = (Ax, Ay) is the wave polarization vector. For simplicity, instead of studying
propagating waves like the one in Eq.(28), we simulate stationary waves. In practice, we
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take the real part of Eq.(28) and thus we excite the stationary modes of oscillation of the
lattice, by fixing specific values of g and of A in the cosine expression:

(R;) = Acos( - R;) . (29)

We normalize the array 77 as detailed in Section 4.

5.1 Square Lattice

Different oscillation modes of the square lattice are simulated below. Since simulations
deal with a 6 x 6 supercell, to which PBCs are applied, there are only discrete allowed
¢ points in the first Brillouin zone, determined by the following rule [3]:

> ng » ny -
= b1 + br 30
q N, 1 N, 2 (30)
where N " N N N
ng ng ng ng ng
= — +1,—_+2,... _2, _1’ ’
T 2 2 2 2

and N, ¢ are lattice repetitions in the @, d, primitive directions. Since N,, = N,, = 6,
the allowed g points are:

soa .o h2m 227 30
ey = 6 a6 a

Points with g, = —7 and/or g, = —7 are excluded because they coincide with g, = 7~
and/or g, = Z (zone-edge g values).

This preliminary study shows that, because of the PBCs, there are N,,, N,, = 36 allowed
wavevectors in the 19BZ and then 36 phonon modes per phonon branch. The total
number of different phonon modes in the two branches is 2N, N,,, = 72, coinciding with
the number of degrees of freedom for the motion in 2D of N, N,, = 36 atoms. We
first simulate two different zone-edge (ZE) phonons, and then a random superposition
of normal modes.

5.1.1 Point-X Zone-Edge Phonon

Longitudinal and transverse vibration waves of the square crystal with wavevector equal
to ¢ = Z(1,0) have wavelength A = 2a. They are located at the X simmetry point of
Figure 5. According to Eq.(29), the initial displacements are:

Nx, = COS (g I_éi) , ny=0. 3D

R; assumes the values of the equilibrium atomic positions Ri=i-a,wherei =0,1,...,5.
This pattern of displacements is illustrated in Figure 16.

The oay, study conducted in Ref.[2] concluded that, for both longitudinal and
transverse phonons at X, the dominant anharmonic term in the @ — 0 limit is the fourth,
since the third order cancels out. The justification given for the fact that V3 = 0 can
be found in Ref.[2]’s Appendix and goes as follows: “the third order is a combination
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Figure 16: Point-X zone-edge atomic initial displacements. The normal
mode wavelength is A = 27” = 2a. Black single arrows describe the longitu-
dinal phonon; red double arrows represent the transverse motion.

of polynomials coupled in such a way that their total sum cancels out as a result of
displacements from the equilibrium position that follow the symmetries of the lattice
under consideration”. That statement can now be confirmed by examining Eq.(22):

taking longitudinal motion as an example, all terms oc uy, . vanish: therefore only the
2

terms oc @uy; u)zci and oc auy uy; could be nonzero. However, by adding all these terms

up, taking into account the appropriate signs, they cancel each other out.

Figure 17 reports the time evolution of AV, and AV3 for both longitudinal and
transverse waves, excited with a small amplitude @ = 10~24. Since V3 = 0, AV, and AV;
coincide. The amplitude of these high-order energy terms is larger for the transverse
mode than for the longitudinal one. The oscillations have different frequencies, that
match Figure 7. Figure 18 reports the average magnitudes of oAy, and oay, as a function
of . Of course, oay, coincides with oay, for both longitudinal and transverse phonons.
A logarithmic fit of the data reveals a power law of the type: oy, o a*. This means
that the dominating term is the fourth-order one, since V3 = 0. Error bars are visible
and represent the fluctuations associated with each oay, (@) or oay, (@) point. Here and
in the rest of this thesis, they are estimated using Eq.(48). Incompatibility between the
expected and estimated angular coeflicient is observed in Figure 18. Compatible values
are obtained by repeating the study on a smaller number of oy, points.
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Figure 17: Time evolution of AV, and AV; (coincident) for the longitudinal

(black solid line) and transverse (red dashed line) phonon excitations at the

g point X of a 6 x 6 square lattice. The excitation amplitude is @ = 10~2a.

The longitudinal motion is associated to a higher-oscillation frequency and a

smaller amplitude of these anharmonic terms.
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Figure 18: oAy, (@) and oay, (@), Eqs.(26) and (27), for the ZE longitudinal
and transverse phonons at X for the square lattice (see Figures 5 and 16). Both

follow a power law oay, o a* over a broad range of @, as confirmed by a linear

fit on the logarithms of @ and oay,, whose angular coefficients are compatible

with the expected exponent 4. Error bars represent the fluctuations related to

the calculation of oAy, and they are estimated using Eq.(48). Each point is

the result of an average over a simulation of duration fenq = 30(m/K)'/?.
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Figure 19: Diagonal ZE atomic displacements. Black single arrows describe
longitudinal displacements; red double arrows represent transverse displace-
ments for ¢ = 27”( 1,1). The two are interchangeable if we consider the
equivalent point g = 27” (1,-1).

5.1.2 Point-M Zone-Edge Phonon

Next, we simulate zone-edge phonons at the 13'BZ corner, i.e. oscillations having
wavevector ¢ = Z(1, 1), namely the M point in Figure 5, with wavelength A = |2;[—”| =2a.
Figure 19 visualizes the atomic starting displacements.

Figure 19 makes it clear that, at this g point in practice the longitudinal motion
is equivalent to the transverse one. This observation is reflected in the fact that the
respective phonon dispersion frequencies coincide at the M point in Figure 7 and that
AV, (t) and AV3(t) coincide in Figure 20, which shows the time evolution of AV, and
AV; for @ = 10 2a.

As in the previous subsection, the trend of oay, as a function of « is studied. Figure
21 shows the results. For this diagonal ZE atomic oscillation, exactly as in the X-point
phonon, the dominant anharmonic term is the fourth, since V3 = 0.
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Figure 21: oy, as a function of the amplitude @ of a § = M phonon
excitation of a 6 X 6 square lattice. Like in Figure 18, a fit on data points

confirms the power law oy, o @*. Data points and their error bars are

computed as in Figure 18. Longitudinal and transverse phonon frequencies

coincide at point M.
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Figure 22: Vi, V,, V3, AV, and AVj as a function of time, related to the
random combination of phonons of the square lattice for @ = 1072a. Since
Viot and V;, have much larger amplitude than the other quantities, we multiply
V3 and AV, by 10°, and AV; by 10, in order for all the signals to be visible.

5.1.3 Combination Of Phonons

For all special displacements investigated so far, the V3 term vanishes exactly. In contrast,
by starting with random displacements from equilibrium, like for the static evaluations
of Section 4, we can excite several phonon modes simultaneously and, as a result of the
lack of symmetry, we can explore situations where V3 # 0.

Figure 22 shows the time evolution of Vi, V5, V3, AV,, AV3. These oscillations are
the result of the superposition of vibrating modes of different frequencies and amplitudes.
We can compare them, for example, with the single-mode oscillation in Figure 20.

Figure 23 illustrates the results of the average amplitude oay, analysis. In this
simulation V3 # 0 and then it is the leading anharmonic term; the next one is the fourth
order.

5.2 Hexagonal Lattice

In the following we simulate different hexagonal crystal oscillations. In this case N,,, = 6
and N,, = 6. Therefore, referring to Eq.(30):

ny,ny = O,il,iz,?)

and there are N,,, N,,, = 36 allowed wavevectors in the 1¥'BZ as well as 36 phonon modes
per branch. The number of degree of freedom and therefore the total number of phonon
modes in the two branches is 72.
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Figure 23: oAy, and oay, for a random oscillation of the square lattice. Two
distinct fits reveal that oy, o a3, while OAV, a*. Error bars are visible
and they are computed using Eq.(48).

5.2.1 Point-K Zone-Edge Phonon

The ZE phonon associated with point K in Figure 11 has ¢ = 27” (%,O) and thus a

wavelength 4 = %a. According to the Eq.(29), the initial longitudinal displacements

from equilibrium are:

4 -
Nx, = COS (£ R,-) , ny=0, (32)

where R; assumes values which are integer multiples of a /2.

Figure 24 sketches the atomic displacements for this normal mode of oscillation.
Exactly like for the ZE phonon at point M in the square lattice, also for this phonon
of the hexagonal lattice the longitudinal and transverse motion coincide. We see the
coincidence of these frequencies in Figure 12, where the respective dispersion curves
meet at point K.

Figure 25 compares the time evolution of V3 and AV,. By analysing Eq.(23), like
we did for the square lattice, we see that V3 vanishes for the initial displacements of
this phonon. Indeed, in Figure 25 we observe that this happens at the beginning of the
simulation. However, as soon as the system begins to vibrate, anharmonic terms are
activated, which excite weakly some other phonon mode, whose coupling provides V3
with the peculiar time evolution observed in Figure 25: three small peaks alternating
with a larger one.

In Figure 26, we observe that Vi, and its Taylor terms from fourth order onward (i.e.
AV3) oscillate at the same frequency. However, AV3 deviates visibly from the cosine-like
profile of V.

25



R

F?
R
F?

-
a2 B
? 11
- o - o

Figure 24: ZE phonon on point K of the hexagonal lattice. Black single
arrows refer to longitudinal oscillation, red double ones instead describe
the transverse phonon. The wavelength associated to this normal mode is
A= %a. Note that the shorter arrows have half the length of the longer ones
and opposite orientation.

To evaluate the power law of V3 energy contribution, we execute the average am-
plitude oay, and oay, analysis. Figure ?? exposes the results of this study. Remarkably,
the fit on oay, data reveals that the fourth order is the dominant anharmonic one, like
for the oay, points. The latter is of course dominated by fourth-order terms, oay, o a*.
The difference between AV, and AVj is similar to (V3). If we evaluated the quadratic
mean of V3 with an expression similar to Eq.(27), we would also obtain a power law
o a*, which is quite remarkable for a third-order term.
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Figure 25: Third-order Taylor expansion (blue dashed line) compared with
AV; (solid red line). These oscillations correspond to @ = 1072a. Longitu-
dinal and transverse motion coincide for the specific point-K phonon of the
hexagonal lattice (Figure 12). V3 vanishes exactly at tog = 0, as predicted
by Eq.(23). The observed time evolution originates because of anharmonic
terms of higher-than-third order.
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Figure 26: Terms from the fourth order onward (AV3, green dashed line),
compared with the total potential (black solid line), for = 1072a and
the coinciding longitudinal and transverse oscillations at point K, for the
hexagonal lattice. AV3 is multiplied by 10° in order to make it visible.
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Figure 27: Zone-edge phonons at point K of the hexagonal lattice, see
Figure 11. Longitudinal and transverse waves coincide as shown in Figure
12. opy, < o* and OAVY; & o*. However, there is a difference in the prefactor
of the power laws, which translates in a shift of the two linear trends in log
scale. This is due to the fact that, even if V3 = 0 at ¢y, however, once the
system starts to vibrate, other phonons are weakly activated and their coupling
provides an energy contribution of third order in the displacements, see Figure
25. These other modes are responsible for oay, o a*, but not coinciding with

OAV;-
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Figure 28: Zone-edge phonon at point M’ of the hexagonal lattice, Figure

11. This wave has 2 = V3a. Black single arrows identify the longitudinal
displacement, while red double arrows describe the transverse one.

5.2.2 Point-M’ Zone-Edge Phonon

Next, we simulate a zone-edge phonon at M’ point of the hexagonal lattice, Figure 11.
It has g = %’T(O, %) and A = V3a. Longitudinal displacements from equilibrium along
the vertical direction are:

2 -
Ny = 0 , Ny; = COS(\/_T R,) , (33)
a

with I_éi =V3a-iandi = 0, % 1,... % Figure 28 schematises the atomic initial
displacements for this phonon.

In Figure 29 we report AV>(¢) and AV5(¢) for @ = 1072a. The two quantities
coincide for both the longitudinal and the transverse motion. This suggests that V3 = 0.
The two oscillations have visibly different frequencies, as expected at point M, see Figure
12.

In Figure 30 we evaluate the amplitude of the dominant anharmonic orders. What
emerges is that oAy, = oay, « a* and then even for these modes the fourth order is the
leading one.
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Figure 29: AV,(r) and AV5(¢) associated with the longitudinal (black solid
line) and transverse (red dashed line) ZE oscillation at point M’ of the hexag-

onal lattice. They are computed for @ = 10~2a. The two waves are different
in amplitude and frequency.
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Figure 30: ZE phonon at point M’ of the hexagonal lattice, Figure 11. The
fit’s slope reveals that oy, o a* for the longitudinal and for the transverse
motion. Thus, as long as V3 = 0, the fourth is the leading anharmonic order.
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Figure 31: Time evolution of Vi; = V,, V3, AV, and AVs for a random
excitation with & = 10724 of the hexagonal lattice. We multiply V3 and AV,
by a factor 103, and AV;3 by 103 for easier comparison.

5.2.3 Combination Of Phonons

By exciting the single phonon at high-symmetry point M’, we observed that V3 vanishes
exactly. Also for the point-K phonon we concluded that V3 = 0 at 7y, by looking at
Figure 25. However, the phonon at point K is characterised by the fact that, as soon as
the atoms begin to move, other phonons emerge, whose coupling is responsible for the
time evolution of V3 in Figure 25.

In order to investigate an atomic motion with V3 # 0 (even at ty), we simulate a
random superposition of vibrational modes of the hexagonal lattice, generated by random
displacements, like in Section 5.1.3.

Figure 31 compares the time evolution of all the studied quantities for this random
combination of phonons. As expected, these oscillations have no periodicity.

The time averages of Figure 32 reveal that the leading order of the anharmonic
terms in Vi is the third order, followed by the fourth one, as proved by oy, o a3 and
OAV; &€ CZ4.

6 Conclusions

In this thesis we have studied a few aspects of lattice dynamics and geometric anhar-
monicity. In particular, we have considered 2D crystal lattices of different geometry:
square and hexagonal.

In Section 2 we have calculated the harmonic phonon dispersion frequencies for
these systems. Then, with the intention of going beyond the harmonic approximation
and investigating the nature of geometric anharmonicity, in Section 3 we have derived
the expressions of the third-order terms in the Taylor expansion of the total potential in
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Figure 32: Study on dominant orders in a random superposition of phonons

3

of the hexagonal lattice. Two fits reveal the power laws oay, « o’ and

OAV; a*. Error bars are computed as explained in Appendix C.

Eq.(1), for both geometries. We have verified the correctness of these expressions in
Section 4.

Finally, in Section 5 we have conducted a few numerical simulations using a
MD code. For both bidimensional lattice geometries, we have first studied certain
zone-edge single phonons, and then a combination of vibrating modes. For each of
these atomic motions, we have analysed which terms of the Taylor expansion of Vi
dominate. In particular, we have executed a campaign of simulations, changing the
vibration amplitude o and evaluating the average quantities oay, and oay,, Eqs.(26)
and (27). We have verified that for specific zone-edge phonons, associated with certain
high-symmetry points, the third-order term vanishes and the fourth one is the leading
anharmonic term. In the hexagonal crystal, however, we have identified a zone-edge
phonon (point K, Figure 11) where V3 = 0 only at the beginning of the simulation: during
the time evolution, anharmonic terms activate other phonon modes, producing a nonzero
V3 whose average amplitude, remarkably, grows as a*. We have verified that the same
phenomenon occur for other g points, not at the zone boundary. A precise theoretical
understanding of this peculiar coupling phenomenon probably deserves further attention.

When we excite a random set of phonons, V3 is the first dominant anharmonic
term, in both the square and hexagonal lattice. This is the expected behaviour for general
displacements, where symmetry does not cancel third-order terms. Perhaps, a single
phonon mode associated to nonzero V3 may exist and it would be interesting to identify.

This research could also be extended by assuming a different pairwise interaction
between atoms, e.g. a Lennard-Jones potential. One would need to replace the expression
of this new potential in Eq.(42) and carry out a similar derivation to the one reported in
Appendix B.

Another extension of the present work would be the calculation of the fourth-order
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terms in the potential. This V4 term would allow us to describe precisely anharmonicity
even in simple high-symmetry single-phonon excitation. Besides, V4 would permit us to
study the new quantity AVs = Vi — Vo — V3 — V4, which contains all anharmonic terms
starting from the fifth order.

Finally, it would be interesting to evaluate the effect of these anharmonic terms on
the overall equation of state for such model crystal.

A Dynamical Matrix Method

We follow the method suggested by Ref.[7] to derive the phonon dispersion curves in
harmonic approximation.

ﬁj V\.]

Figure 33: Diagram on the interaction between atom i and a j-th atom. In
addition to the f\’j vector, which connects the positions of the two, generic
displacement vectors i; and i ; are also represented.

Referring to Figure 33, the central force that the atom i experiences when it interacts
with the j-th atom is:

Fi=K;[R;- (i, )| R; , (34)

where R ;= R i/ |I_i3 jl and i}, i; are displacement vectors. K; is the coupling constant
that quantifies the strength of the interaction between the two atoms. The equation of
motion for atom i is therefore:

d2i; .
m—'=>"F; (35)

where the summation runs on the nearest and next nearest neighbors# of i and thus
becomes:

=K S =)+ Y (=)

i

J’ J

4According to the numbering in Figures 4a or 9a.
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Index j’ runs on first neighbors, while j” on second neighbors.
At this point it is assumed R; as the origin and that the displacement vector of the
J-th atom at position R; is of the form

with Ej = (x;,/), A= (A, Ay), ¢ = (qx. qy). By inserting i; = Ae™ into Eq.(35):

LA ER—y S o S (36)
m o mw-Ae = Z i

We now need to explicitly calculate all the forces acting on atom i. We give the
first force acting in the hexagonal scheme, as an example:

-

Fi=K|[Ry- (i, - ;)| Ry =
Ry - (Ae (# - M) Ze_iwt)] R =
_K (lqu ) .;,l.)]jgl:

Al
et

= K | (e - 1) (1,0)

where R| = a(1,0) and R; = (1,0).
Once all the forces have been calculated, we substitute them within Eq.(36) and
thus we obtain the dynamic vector equation:

w*Ag = Z DeyAy ., &x=(xy). (37)
X

From this the four components of the dynamic matrix are derived:

D XX ny (38)
Dyx Dy,
We calculate phonon dispersion frequencies from the eigenvalues of that matrix:
Dy +D D, — Dy,\?
W = el \/ (TW) +DyD,y . (39)
B Taylor Expansions
The generic Taylor expansion for the potential in Eq.(1) is as follows:
‘/tOt:VO-i_ZHfiufi Z Dfl Xjuflu)(j Z \Pfl Xjs gkuftu/\,/jugk-i_o(u ) (40)
i€ Cijéx ' ijkéxe
wherei = 1, ..., N runs on the lattice nuclei, j and k run on the nearest and next nearest

neighbors of the i-th nucleus. Greek letters are indices running on the three spatial
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coordinates: &, x, { = x,y, z, while ug, represents the displacement from equilibrium of
the i-th nucleus in the & direction. The constant term is set to zero; the first-order term
is also zero when evaluating the derivatives at equilibrium. We define:

Vz__ ZD‘_lejuftqu ’ V = Z letX/ gkué:zu/\ﬁufk ’
' ijéx ' ijkéxd
where Dy, . has already been defined in Eq.(6) and

Vit
Il =
i ( aufi )

(41)

F*Vior
dug,Ouy dug, ||,

’ lPé:iszvfk = (

We rewrite the total potential in Eq.(1) as

| < Ki; 2
V=3 2,V ;7(”1 i) (“2)

As we are going to calculate the derivatives of the interaction potential between a

pair of atoms V;;, it is useful to simplify the formalism of each individual term of the
derivation in the following way,

8%V

Ve, = OV
T
eq

Ug Uy . Ver.r, = ——————
3 Xj é‘:lXj{k aflanaé/k
eq

UgUy Uz

in order to compactly highlight all the development terms that need to be calculated
individually for the two-dimensional case.
The second-order term is:

N

1

:EZ o+ Vi 2Vt 3 (Vi + Vi + Vi + Vi (43)
i=1 J#i
Instead, the third-order term is:
1
V3 = 8 Z in_% + Vy,-3 + 3Vy,~x,-2 + 3V)7i2xi+
i=1

+ Z ( a2 TV ¥ Vi # Va2 + 2V, + 2ijxl.yi) + (44)

J#E

+ ijzxi + Vyjzyi + Vyjzxi + ijzyi +2Viiyix + 2ijyjyi]} .

For any kind of pair-interaction potential (Eq.(1) is just an example, Lennard-Jones
interaction is another) there are no coupling terms involving three or more distinct atoms
simultaneously and so Vi, has nonzero terms containing only two distinct or equal
particles, labelled by indices i and ;.

Now it is convenient to calculate separately all derivatives of V;;, considering

£ € (x,y):
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¢ First order:

; rij =i ) (& = &)
aa‘;iJZZKij(/ J) =

r. .
<i,j> 1

¢ Second order:

s &-&\V ru-ri | (&Y

ag?j:ZKij{( rijj) ’ ”ijj 1_( rijj) |
i <i,j>

Vi =&\ iy | (60— ) _

9E;08; 2. i {_( rij ) T ( rij ) NI

<i,j>
PVy PV PV Py
0x;0y; B 0y;0x; B 0x;0y; - 0y ;0x; B

5 (o)

* Third order:
Pvy PV PV
98 ogk  0£08
- 3w (28 - () P ) )
<> Tij rij Tij rij
FVy _ OV OV Oy 9*Vyj

axl.zayl- B 0y ;0x;0x; B 6)(?8};1- B _ﬁyjaxl,z B _8xjﬁxl.@yi =

2 o pl 2
:ZK,-' yi_zyj 1—3(xi_xj) +ru il 3(xi_xj) -1]¢
<i,j> T J Tij Fij Tij

Fviy V¥V o ¥V PV
dx;0y?  0x;0y;0y; (9y§8x,~ dx;0y? 0y ;0yi0x;

2 . €q 2
Xj—X; =Y rij =1 PR
I e R e e A |
rii rij rij rij

<i,j>
Evaluating Eq.(43) and Eq.(44) at equilibrium and taking into account the specific
geometry of the lattice, the formulas given in Sections 2 and 3 are derived.

C Error Estimation

The MD code integrates the equations of motion of each atom by applying the RKF
method, which proceeds in M integration steps. At each step it computes some quantities,
such as Vo, V> and V3. Let us generically call p one of these data. Clearly a few p; are
closely correlated within a certain correlation time. Therefore, if we want to estimate an
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average of p; values by applying, for example, Eq.(27), we cannot computed the standard
deviation using the usual formula, because p; values are not independent data.

What we can do is to divide M into Ngjx = 30 blocks. So each block contains
L= Lﬁj integration steps of the RKF algorithm.

At this point within each block we calculate the average:

=7 D pr (45)

where index j = 0,..., Ngx — 1 identifies the j-th block. We must pay attention to
the fact that the last block may not contain exactly L elements. For the final block the
summation in Eq.(45) runs from Ngjx — 1 to M.

At this point we are able to calculate the average of the averages in each block:

1 Nk ) 1 N )
_ . - 2 46
(P) NBH(;@» »*) NBlk;<p>j (46)

Assuming that each block is long enough with respect to the correlation time, the
averages in Eq.(45) are independent data and we can finally use them to estimate a

2\ _ 2
SiaDev, = [ L1420 @47
Blk —

In practice, we use this statistics for quadratic quantities, such as in Eq.(27). In

standard deviation:

other terms, p(t) = v?>(¢). Applying standard error propagation, the quadratic average
and the standard deviation are:

B 1 /<p2>—<p>2
Wy ={(p) . StdDev, = AR (48)

In Section 5, we use these equations to evaluate oy, and oay,, and to estimate the

corresponding error bars.
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