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Abstract

The objective of this thesis is to study the adsorption properties of copper

atoms on a single-walled zigzag (12,0) carbon nanotube. The Cu/CNT system

is a subject of numerous studies for catalysts purpouse and it’s mechanical and

electronic peculiar characteristics.

Ab initio calculations based on Density Functional Theory (DFT), imple-

mented in the Quantum ESPRESSO package, were performed to investigate the

adsorption sites and their corresponding adsorbtion energies 𝐸ads.

The results indicate that the Cu adatom preferentially adsorbs on the outer

surface of the CNT, specifically at the axial bridge site. The external binding

energy is found to be between 0.3 and 0.6 eV, a value characteristic of physisorp-

tion. Internal adsorption is found to be energetically less favorable, with very low

binding energies (∼ 0.13 eV). This demonstrates that the CNT curvature plays a

significant role in determining the adsorption strength and sites stability.
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Chapter 1

Introduction

Metal atoms anchored to functionalized carbon allotropes, see Fig. 1.1, play a ver-

satile role in nanotechnology and materials science. They can be engineered to act

as sensitive probes for detecting small molecule adsorption, making them useful in

chemical sensing applications. These systems also contribute to hydrogen storage

by enhancing sorption capacity and stability, and serve as active sites for catalytic

reactions, improving efficiency and selectivity in various chemical processes. Ad-

ditionally, they facilitate the controlled growth of metallic nanowires and support

the development of nanoscale electronic devices by enabling precise fabrication

techniques. In particular, copper adatoms and Cu-clusters on carbon nanotubes

(Cu/CNTs) are promising candidates for lightweight, high-performance applica-

tions in electronics, aerospace, and energy systems, as they combine copper’s

excellent conductivity with the exceptional strength and stability of CNTs.

The aim of this thesis is to study the adsorption properties of copper atom(s)

onto a single-walled CNT, in particular a zigzag (12, 0). We perform ab initio

Density Functional Theory (DFT) calculations to investigate adsorption sites and

evaluate the corresponding binding energies. Our results show that a single Cu

atom preferentially adsorbs on the external surface of the CNT, with a binding

energy of ∼ 0.3-0.6 eV, while internal adsorption is energetically less favorable

with ∼ 0.1 eV binding energies. This indicates that curvature plays a significant

role in determining the adsorption strength and site preference.

This thesis is organized as follow:

• Chapter 1: introduction to CNT and graphene properties and applica-

tions.

• Chapter 2: theoretical framework of the DFT and presentation of Quan-

tumESPRESSO package.

• Chapter 3: system setup and simulation parameters convergency tests.
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Figure 1.1: Left to right: a graphene sheet, a zigzag carbon

nanotube, and a C540 fullerene. Those are examples of carbon

allotropes based on 𝑠𝑝2 hybridization.

• Chapter 4: calculations and analysis of results, including a comparison

with literature data.

My thesis investigates whether a zigzag (12,0) CNT can accommodate a

Cu atom inside the tube. We also analyze how curvature affects Cu adsorption,

comparing our results with literature data for (8,0) CNTs and graphene layers.

1.1 Carbon nanotubes

Carbon nanotubes (CNTs) are carbon allotropes with a quasi-one dimensional

cylindrical structure, see Fig. 1.2, derived from rolled graphene sheets. They are

classified in two categories: single and multi-walled CNT.

The synthesis of fullerenes via arc-discharge generated interest in discovering

new graphenic nanostructures. Multi-walled nanotubes (MWCNTs) are multiple

concentric graphene cylinders, the first being discovered in 1991 by Iijima [11]

with a similar apparatus and analyzed with electron microscopy.

Single-walled CNTs (SWCNTs, in the following thesis sections simply CNTs)

were synthetised for the first time in 1993 by Iijima and Ichihashi [12] and Bethune

et al. [3] independently using transition-metal catalysts in arc-discharge pro-
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Figure 1.2: A few experimental Scanning Tunneling Micro-

scope (STM) images of carbon nanotubes. From Ref. [15].

cesses, consisting of a single rolled graphene layer.

Since their discovery the community have conducted numerous studies be-

cause their unique properties. CNTs exhibit exceptional mechanical strength

(Young’s modulus ∼1 TPa), high thermal conductivity (∼3000 W/m·K), and

unique electronic properties, ranging from metallic to semiconducting behavior

depending on chirality, described below, and diameter. These characteristics

make CNTs an important object of studies in condensed matter, nanoelectronics

and quantum technology research works.

The chirality is defined by the chiral vector

A = 𝑛a1 + 𝑚a2 (1.1)

where (𝑛, 𝑚) are integers, often called chiral indices, and a1 and a2 are the primi-

tive vectors of the graphene lattice. The chiral vector wraps around the nanotube
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Figure 1.3: A graphene with {a1, a2} lattice vectors. The

highlighted surface is the primary cell of a (6, 3) CNT un-

wrapped, with the red chiral vector A and the green transla-

tional vector C.

and determines its circumference. Nanotubes with smaller diameters, that is,

those with lower chiral indices, exhibit higher curvature. This curvature forces

the local bonding geometry to deviate from the ideal planar sp2 configuration,

affecting the electronic structure and energy.

When approximated as an infinitely long tube, the CNT can be modeled as a

one-dimensional crystal, whose unit cell corresponds to the minimal periodically

repeated segment allowed by the chirality.

The radius 𝑅 of a nanotube is given by

𝑅 =
𝑎

2𝜋

√
𝑛2 + 𝑛𝑚 + 𝑚2 (1.2)

where 𝑎 is the graphene lattice constant, approximately 246 pm. The number of

atoms 𝑁 in the nanotube unit cell is also related to the chiral indices

𝑁 =
4(𝑛2 + 𝑛𝑚 + 𝑚2)

gcd(2𝑛 + 𝑚, 2𝑚 + 𝑛) . (1.3)

Another key vector is the translational vector C, perpendicular to A, which

defines the periodicity along the tube axis.

C = 𝑛𝑐a1 + 𝑚𝑐a2 . (1.4)

The relation between the chiral indices (𝑛, 𝑚) and the indices (𝑛𝑐, 𝑚𝑐) is deter-

mined by the condition that C is the shortest lattice vector perpendicular to
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Figure 1.4: Graphene canonical adsorption sites: top (T),

bridge (B), and hollow (H)

A.

𝑛𝑐 = − 2𝑚 + 𝑛
gcd(2𝑚 + 𝑛, 2𝑛 + 𝑚) , 𝑚𝑐 =

2𝑛 + 𝑚
gcd(2𝑚 + 𝑛, 2𝑛 + 𝑚) . (1.5)

Together, these vectors describe how the graphene sheet is rolled to form the nan-

otube, see Fig. 1.3, thereby determining its structural and electronic properties.

1.2 Metal adsorption on graphene and nanotubes

On graphene, C-atoms hybridize in an 𝑠𝑝2 configuration, forming 𝜎 bonds with

three neighboring atoms. The orthogonal 𝜋 orbitals form a delocalized electronic

cloud above and below the surface, which can interact with adsorbed metal atoms

and generate bonds with their 𝑑 orbitals.

In literature it’s possible to find ab initio studies of graphene adsorption

with Cu and transition metals [18, 24] for their application as single atom cata-

lysts. Cu-doped [5] can enhance reactivity and functionalized graphene becomes

a very interesting structure for the synthesis of Quantum Dots [13]. Experimental

studies on graphene interacting with transition metals [22, 19] shows agreement

with DFT simulations.

The adsorption energy, lattice distortion, and Cu-C bond length depend on

the relative position of the adatom. As Fig. 1.4 shows, we can distinguish different

adsorption sites on graphene:

• Top (T): the adatom is located directly above a C-atom;
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Figure 1.5: Internal and external adsorption sites of a zigzag

CNT. Grey balls represent C-atom. Red spheres represent top

sites, purple cylinders represent axial bridge sites, green cubes

represent oblique bridge sites, and blue spheroids represent

hollow sites. Non-grey sticks are for guiding the eyes and

they are the relative projection on the tube surface.

• Bridge (B): The adatom is positioned above the midpoint of a C–C bond,

hence the Cu binds with two C-atoms;

• Hollow (H): The adatom is placed above the center of a hexagonal carbon

ring.

It’s noteworthy that catalyst sites performance can be regulated by the car-

rier morphology [16]. On a curved surface such as a CNT, local curvature can

enhance the interaction with an adsorbed atom. Adsorption energy tends to in-

crease with curvature, meaning stronger binding. Indeed, the curvature of CNTs

induces rehybridization of the orbitals, modifying the distribution of electrons [14]

and sometimes generating a gap. For instance, on the convex side, the orbitals

are more exposed to Cu 𝑑-orbitals, which may lead to stronger interactions. On

the concave side, the 𝜋 orbitals are oriented inward: although each individual

orbital is less exposed, a larger number of orbitals may collectively point toward

the adatom, potentially increasing the overall orbital overlap between CNT and

adatom and strengthening the interaction.

On zigzag CNTs, we can distinguish T and H sites as above a graphene layer,

while the curvature-induced symmetry breaking leads to two non-equivalent B

sites, axial B1 and oblique B2, depending whether the C-C bond is parallel to
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the tube axis or not, see Fig. 1.5. We further observe that the adsorption can

occur external (ext-T, ext-B1, ...) or internal (int-T, int-B1, ...) the tube.

We found several DFT studies on the adsorption of Cu and other transition

metal atoms [1, 26] as well as small clusters [4] on (8, 0) CNTs. The reported

adsorption energies for atoms on the external surface are approximately 0.5 eV, in-

dicating a relatively weak interaction. Such energies are typical of physisorption:

metal atoms are bound to the CNT surface without strong orbital hybridization,

although some minor polarization effects may occur due to the proximity of the

metal and the 𝜋-electron system of the CNT.

We select the zigzag (12, 0) CNT for several practical and scientific reasons.

First, its diameter is large enough to allow the adsorption of atoms inside the

tube, enabling a direct comparison between internal and external binding sites.

At the same time, it is not so large as to make the calculations computation-

ally prohibitive, keeping the system tractable for DFT simulations. Moreover,

the (12,0) tube still exhibits a noticeable curvature affecting the local electronic

structure and the reactivity of the C-atoms. This therefore represents a good

compromise between computational efficiency, chemical realism, and the ability

to study curvature-dependent effects on adsorption.
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Chapter 2

Methodology

In this chapter, we describe the theoretical framework and computational meth-

ods used to study the adsorption of copper atoms on carbon nanotubes. The

primary tool employed is density functional theory (DFT), a quantum mechan-

ical method widely used to investigate the electronic structure of many-body

systems. Calculations are performed using the Quantum ESPRESSO package,

which implements DFT with plane-wave basis sets and pseudopotentials. We

discuss the choice of exchange-correlation functionals and numerical parameters

to ensure accurate and reliable results.

2.1 The DFT scheme

Our quantum-mechanical system is studied using DFT, which describes the elec-

tronic structure of many-body systems in terms of the electron density, rather

than the full many-electron wavefunction. This approach drastically reduces com-

putational complexity while maintaining high accuracy for ground-state proper-

ties. DFT is a well-established method in computational physics and chemistry

and is widely used to investigate the electronic structure of atoms, molecules, and

condensed matter systems.

2.1.1 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation can be applied to any Coulomb system

to separate electronic and nuclear motions. It allows us to treat the nuclei as

fixed while solving the electronic Schrödinger equation, threating the ionic field

as external:

𝐻 = −
∑︁
𝑖

ℏ2

2𝑚𝑒
∇2
𝑖 +𝑈 +𝑉ext + 𝐸nn , (2.1)
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where 𝑈, 𝑉ext represent the electron-electron and electron-nucleus interaction,

respectively. 𝐸nn depends only on the positions of the nuclei and is therefore

independent of the electronic wavefunction.

The all-electrons Hamiltonian can be conceptually divided into simpler con-

tributions:

𝐻 = 𝑇 +𝑉𝑒𝑥𝑡 +𝑈 (2.2)

𝑇 = −
∑︁
𝑖

ℏ2

2𝑚𝑒
∇2
𝑖 𝑉ext = −

∑︁
𝑖, 𝑗

𝑒2𝑍 𝑗

|r𝑖 −R 𝑗 |
𝑈 =

1

2

∑︁
𝑖≠ 𝑗

𝑒2

|r𝑖 − r 𝑗 |
, (2.3)

where 𝑇 is the kinetic energy operator, 𝑉ext represents the interaction with the

external ionic field generated, each ion positioned in r 𝑗 with atomic number 𝑍 𝑗 ,

and 𝑈 accounts for the electron-electron interaction. The system-specific infor-

mation is contained in 𝑉ext. The problem is many-body due to the presence of

the electron-electron interaction 𝑈.

2.1.2 The Hohenberg-Kohn theorems

The theoretical foundation of DFT is provided by the Hohenberg-Kohn (HK)

theorems:

HK1: For a system of interacting electrons in a fixed external potential,

the ground-state electron density 𝑛0(r) uniquely determines the external potential

𝑉ext(r) up to an additive constant.

HK2: The ground-state energy 𝐸0 is the unique minimum of the energy

functional 𝐸 [𝑛], which is a functional of the electron density 𝑛(r).
In other words, both the external potential 𝑉ext and the ground-state wave-

function 𝜓0 are unique functionals of 𝑛(r). Since knowledge of 𝑉𝑒𝑥𝑡 is sufficient to

determine the ground state wavefunction, and the density is directly accessible,

this implies a circular relation

𝑛0(r) ↔ 𝑉ext(r) ↔ 𝜓0 (2.4)

in contrast to the usual unidirectional implication.

𝑉ext(r) → 𝜓0 → 𝑛0(r) . (2.5)

In general, the system information is contained in the more complex many-

body density matrix 𝜌(r1, ..., rN, r1′, ..., rN′), which can be reduced by tracing

out all but a subset of electron coordinates, yielding a simpler object at the
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cost of losing some information. The diagonal of the one-body density matrix

corresponds to the electron density

𝑛(r) = 𝜌(r, r) = 𝑁
∫

𝑑r2 . . . 𝑑rN |Ψ(r, r2, . . . , rN) |2 . (2.6)

The remarkable result of HK is that 𝑛(r), when it is the ground-state density,

encodes all the information about the system.

The total energy functional 𝐸 [𝑛] is defined as

𝐸 [𝑛] = 𝑇 [𝑛] +𝑈 [𝑛] +
∫

𝑑r𝑉ext(r)𝑛(r) , (2.7)

where 𝑇 [𝑛] and 𝑈 [𝑛] are the universal kinetic and interaction energy functionals,

respectively. The ground-state energy 𝐸0 is obtained by minimizing 𝐸 [𝑛] with

respect to 𝑛(r), subject to the constraint that the total number of electrons is

fixed: ∫
𝑛(r) 𝑑r = 𝑁 . (2.8)

The functional forms of 𝑇 [𝑛] and 𝑈 [𝑛] are not known explicitly, but approxima-

tions can be developed.

2.1.3 The Kohn-Sham equations

Kohn and Sham (KS) proposed a practical approach to DFT by introducing

a system of non-interacting electrons whose ground-state reproduces the same

ground-state density as the interacting system. Such a system needs an effective

interaction to account for the many-body phenomena. The KS equations can be

derived from a minimization problem.

The energy of the system to minimize is a functional of the electron density

𝐸KS = 𝑇 [𝑛] +𝑈 [𝑛] +
∫

𝑑r𝑉ext(r) 𝑛(r) (2.9)

𝑇 [𝑛] +𝑈 [𝑛] = 𝑇𝑠 [𝑛] + 𝐸𝐻 [𝑛] + 𝐸xc [𝑛] ,

where 𝑇𝑠 [𝑛] is the non-interacting system kinetic energy, 𝐸𝐻 [𝑛] is the Harthree

energy

𝐸𝐻 =
𝑒2

2

∫
𝑑r 𝑛(r) 𝑑r′ 𝑛(r′)

|r − r′| , (2.10)

and the 𝐸xc [𝑛] term is the exchange-correlation energy functionals that includes

all the ignored terms of the functional that account for the Coulomb exchange,

kinetic variation 𝑇 − 𝑇𝑠, and the electronic correlation.
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Since the particles are non-interacting, the ground state will be the Slater

determinant of orbitals {𝜙𝑖} that minimize the functional 𝐸𝐾𝑆 [𝑛], with the or-

thonormality constraint

⟨𝜙𝑖 |𝜙 𝑗 ⟩ = 𝛿𝑖 𝑗 . (2.11)

It’s possible to write the Lagrangian, a functional of the KS orbitals that merges

the 𝐸𝐾𝑆 with a Lagrange multiplier term

L[{𝜙𝑖}, {𝜀𝑖 𝑗 }] = 𝐸𝐾𝑆 −
∑︁
𝑖, 𝑗

𝜀𝑖 𝑗 (⟨𝜙𝑖 |𝜙 𝑗 ⟩ − 𝛿𝑖 𝑗 ) . (2.12)

The derivation of the KS equations follows requiring the stationarity of this func-

tional
𝛿L

𝛿𝜙∗
𝑖
(r) = 0 ∀𝑖 . (2.13)

These are the partial derivatives of each functional relative to 𝜙∗
𝑖
orbital:

𝛿𝑇𝑠

𝛿𝜙∗
𝑖
(r) = − ℏ2

2𝑚𝑒
∇2𝜙𝑖 (r) kinetic term, (2.14)

𝛿

𝛿𝜙∗
𝑖
(r)

∫
𝑑r′𝑉ext(r′) 𝑛(r′) = 𝑉ext(r)𝜙𝑖 (r) external field term, (2.15)

𝛿𝐸𝐻

𝛿𝜙∗
𝑖
(r) = 𝑉𝐻 (r)𝜙𝑖 (r) = 𝑒2

∫
𝑑r′ 𝑛(r′)
|r − r′| 𝜙𝑖 (r) Hartree potential term, (2.16)

𝛿𝐸xc

𝛿𝜙∗
𝑖
(r) = 𝑉xc(r)𝜙𝑖 (r) exchange-correlation term. (2.17)

Summing all contributions in Eq. 2.13 leads to the effective single-particle

Kohn–Sham equation:

𝐻𝜙𝑖 (r) =
(︃
− ℏ2

2𝑚𝑒
∇2 +𝑉ext(r) +𝑉𝐻 (r) +𝑉xc(r)

)︃
𝜙𝑖 (r) = 𝜀𝑖𝜙𝑖 (r) , (2.18)

which represents an eigenvalue problem for the auxiliary Hamiltonian 𝐻. Its

eigenfunctions 𝜙𝑖 (r) are the Kohn–Sham orbitals, and the eigenvalues 𝜀𝑖 corre-

spond to the energies of the non-interacting reference system. These eigenvalues

themselves are not directly physically meaningful, as they originate from the La-

grange multipliers enforcing orbital orthonormality. The Kohn–Sham orbitals are

instead used to reconstruct the electron density

𝑛(r) =
∑︁
𝑖

|𝜙𝑖 (r) |2, (2.19)

Pseudopotentials are commonly employed to simplify the treatment of core

electrons, focusing on valence electrons, which primarily determine chemical bond-

ing and material properties. The pseudopotentials replace the all-electron poten-

tial with a smoother effective potential, reducing the number of electrons and
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simplifying the computational effort. This leads to significant modifications in

the KS equations, but the overall framework remains unchanged.

2.1.4 Solution to the Kohn-Sham equations

The KS equations are solved self-consistently through an iterative procedure:

1. Start with an initial guess for the electron density 𝑛(r).

2. Construct the effective Hamiltonian 𝐻 using the current density.

3. Solve the KS equations to obtain new orbitals 𝜙𝑖 (r) and eigenvalues 𝜖𝑖.

4. Update the electron density using the new orbitals and their occupation

numbers.

5. Check for convergence: if the density (or energy) has not changed signifi-

cantly, stop; otherwise, return to step 2.

After some iterations, the obtained 𝑛(r) is a (scalar) self consistent field (SCF).

Expanding the KS orbitals in a suitable basis set, such as plane waves or

localized atomic orbitals, transforms the differential equations Eq. 2.18 into a ma-

trix diagonalization problem that can be solved numerically. In the present thesis

we will adopt the plane-waves basis, as implemented in the Quantum Espresso

[7, 6, 8] method.

The plane waves method

The plane-wave method [17] is commonly adopted to take advantage of period-

icity. The total effective potential,

𝑉KS(r) = 𝑉ext(r) +𝑉𝐻 [𝑛] (r) +𝑉xc [𝑛] (r) , (2.20)

must be periodic. Luckily, if the external potential 𝑉ext(r) is periodic and the

electron density 𝑛(r) inherits the same periodicity, then both the Hartree potential

𝑉𝐻 [𝑛] (r) and the exchange-correlation potential 𝑉xc [𝑛] (r) will automatically be

periodic as well. Consequently, the total Kohn–Sham potential 𝑉KS(r) is periodic,
allowing the efficient use of plane-wave basis sets.

According to Bloch’s theorem, it is possible to express each orbital in terms

of a periodic 𝑢 𝑗k modulating a plane-wave factor

𝜙𝑛k(r) = 𝑒𝑖k·r 𝑢𝑛k(r) . (2.21)
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Figure 2.1: Periodic boundary conditions of the Cu/CNT.

Box highlighted in grey lines. C-atoms and Cu-adatom are in

grey and orange balls, respectively. Only the 𝑥𝑦 repetitions

are depicted.

A detailed analysis of the KS equation shows that it can be reformulated in the

following equation for the periodic terms:

𝐻 (k)𝑢𝑛k(r) =
[︃
− ℏ2

2𝑚𝑒
(∇ + 𝑖k)2 +𝑉𝐾𝑆 (r)

]︃
𝑢𝑛k(r) = 𝜀𝑛k 𝑢𝑛k(r) . (2.22)

The wavevector k is restricted to the first Brillouin zone (1BZ) of the reciprocal

lattice. This allows one to solve periodic problems in a single unit cell with

periodic boundary conditions on 𝑢𝑛k.

The matrix elements of the Kohn-Sham Hamiltonian in the plane-wave basis

are

𝐻k k′ = ⟨k|𝐻 [𝑛] |k′⟩ = ⟨k|𝑇𝑠 |k′⟩ + ⟨k|𝑉𝐾𝑆 [𝑛] |k′⟩ = (2.23)

= 𝛿k k′
ℏ2k2

2𝑚𝑒
+
∫

𝑒−𝑖k·r𝑉𝐾𝑆 [𝑛]𝑒𝑖k
′·r 𝑑r = 𝛿k k′

ℏ2k2

2𝑚𝑒
+𝑉eff(k − k′) ,

where 𝑉KS is the Fourier transform of 𝑉KS. Since under periodic boundary con-

ditions 𝑉eff is cell-periodic, see Fig. 2.1, its Fourier transform 𝑉KS is actually a

discrete Fourier series: the potential matrix elements vanishes unless k − k′ is a

reciprocal lattice vector G. This allows us to divide the continuum matrix into

blocks, each corresponding to one k ∈ 1BZ, with non-trivial off-diagonal elements.
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This approach naturally follows the scheme suggested by the Bloch theorem to

divide the problem into many matrices, one for each k in the 1BZ:

{︂
𝐻

(k)
G,G′

}︂
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

... . .
.

· · · 𝑇𝑠 (k +G𝑖) +𝑉eff(0) 𝑉eff(G𝑖 −G𝑖+1) · · ·

· · · 𝑉eff(G𝑖+1 −G𝑖) 𝑇𝑠 (k +G𝑖+1) +𝑉eff(0) · · ·

. .
. ...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.24)

where G are the reciprocal lattice vectors of the periodically repeated simulation

cell, 𝑇𝑠 (k +G) = ℏ2

2𝑚𝑒
|k +G|2 is the kinetic energy term.

For the Cu/CNT system the periodicity along the 𝑥 and 𝑦 axis is artificially

introduced by the plane wave basis, so no 1BZ sampling is needed along 𝑘𝑥 and

𝑘𝑦 reciprocal axis. The only physical periodicity is along the 𝑧 axis: we sample

the k-points only along 𝑘𝑧.

2.1.5 Precision and accuracy of DFT

Obtaining reliable results from DFT calculations requires a careful choice of func-

tionals, pseudopotentials, and numerical parameters.

The one-body KS equations are an approximation to the many-body prob-

lem, and the exact form of the exchange-correlation functional is unknown. This

constitutes an intrinsic limitation to the accuracy of DFT.

Additionally, computational resources limit the achievable precision and ac-

curacy of the calculations. Pseudopotentials introduce further approximations by

replacing the complex all-electron potential with a smoother effective potential

acting on valence electrons. Simulation parameters, such as energy cutoffs and

k-point sampling, also affect the precision of the results.

Functionals

Developing approximate functionals remains an active research field, with many

different approaches. There are several families of functionals, each with its own

strengths and weaknesses. Some exact conditions exist that functionals should

satisfy to ensure physical consistency, but no functional is perfect.

A simple early approximation to the exchange-correlation functional was

the Local Density Approximation (LDA), which assumes that the exchange-

16



correlation energy at each point in space depends only on the local electron

density.

For the Homogeneous Electron Gas model (HEG), the exchange-correlation

energy per particle depends only on the density 𝑛 of the system. What the LDA

does is to use the HEG model locally, assuming that the density varies slowly in

space:

𝜖 𝐿𝐷𝐴xc [𝑛] (𝑟) = 𝜖𝐻𝐸𝐺xc (𝑛(r)) . (2.25)

Since LDA can sometimes yield relatively poor results for inhomogeneous

systems, the Generalized Gradient Approximation (GGA) was developed, which

includes the gradient of the electron density to account for spatial variations:

𝜖𝐺𝐺𝐴xc (𝑛(r),∇𝑛(r)) . (2.26)

Probably the most widely used GGA functional is the Perdew-Burke-Ernzerhof

(PBE) functional, which was constructed to satisfy several known exact condi-

tions for the exchange-correlation energy. Since the community has extensively

tested it and it provides a good balance between accuracy and computational

cost, we adopt the PBE functional in this work.

2.1.6 Numerical parameters

Adopting appropriate numerical parameters is crucial to ensure the precision

and accuracy of DFT calculations. Each calculation involves different stages,

so several parameters must be considered. A few important parameters for the

numerical solution of the KS equation:

• Plane-waves basis-set cutoff : in Eq. (2.24) the Hamiltonian matrix 𝐻 (k)

is discrete but still infinite. A cutoff energy 𝐸cut is introduced to limit the

number of plane waves in the basis set, since the incidence of high-energy

plane waves is negligible for the expansion of the KS orbitals. A larger base

gives a more precise matrix, but is also more computationally expensive to

diagonalize.

• Density energy cutoff : the charge density is also represented using a

plane-wave basis set that typically requires a higher energy cutoff than the

wavefunctions. For PAW pseudopotentials, it is common to set the density

cutoff to 8 times the wavefunction cutoff. A higher cutoff ensures a more

accurate Hamiltonian construction at each step of the SCF cycle.

• k-points sampling: the set {𝐻 (k)}k∈1BZ has infinite elements, so the k-

points are sampled on a finite grid called mesh. The computational cost
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increases linearly with the number of k-points, but parallelization is near-

optimal: linear scaling of the time complexity with little overhead. System

symmetries can also be exploited to reduce the number of k-points required.

• SCF convergence thresholds: The cycle should employ strict conver-

gence criteria to ensure that the electronic structure is accurately deter-

mined. Typical thresholds range from 10−6 to 10−10 Ry for the total energy

change between successive iterations to terminate the self-consistency loop.

After each SCF calculation, results can be used to perform geometrical opti-

mization, reorganizing ions positions and cell parameters to search for minimum-

energy configuration. A few important parameters for structural optimization:

• Ionic relaxation parameters: the structure undergoes relaxation to de-

termine suitable equilibrium positions of the ions in the cell. Various al-

gorithms can be adopted to find an optimal geometry: for this work the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) [21] algorithm is adopted.

• Cell relaxations parameters: the PBC introduce stresses acting on the

structure, resulting in unwanted pressure on the supercell namely the trace

of the stress tensor. The same BFGS algorythm is adopted to relax the

cell parameters and reach a target pressure, generally ∼ 0. For the present

1-dimensional problem, the lateral (𝑥𝑥 and 𝑦𝑦) stress components are ir-

relevant (as long as the replicas do not interact they should be very small

anyway), and only the 𝑧𝑧 stress component along the CNT axis must be

relaxed to 0.

• Relaxation thresholds: to determine convergence of the structural re-

laxation, the energy difference between successive steps must fall below a

threshold, and the total forces on the atoms as well as the pressure acting on

the cell must be sufficiently small. In typical plane-wave DFT calculations,

these criteria correspond to energy changes of 10−3 - 10−4 Ry, maximum

forces below 10−3 Ry/𝑎0, and pressures ≤ 0.5 kbar, ensuring that the sys-

tem is not too far from a stable geometry.

2.2 The QuantumESPRESSO package

TheQuantumESPRESSO (QE) package is a widely used, integrated suite of open-

source software for electronic structure calculations. It centers around pw.x, a

computer program that implements the plane waves method to solve the KS

pseudopotential equations within the DFT framework.
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Its strength lies in the fact that calculations are performed in reciprocal

space, which simplifies the solution of the equations. The plane-wave basis set

is particularly suitable for periodic systems, as band structure calculations are

straightforward.

Periodicity also allows for near-optimal parallelization. The KS equations

are transformed into a Bloch problem and solved for each 1BZ divided in pools,

sets of k-points on a single QE parallel process. The best scaling factor is obtained

putting one singular k-point i each pool. While perfectly suited for crystalline

systems, the main disadvantage of plane waves is that they imply PBCs even for

finite systems. This can lead to artifacts or excessive memory and computation

time usage.

The QE package is highly flexible, enabling calculations on a wide variety of

systems, including crystals, surfaces, and molecules. Given the pseudopotentials

and atomic positions, QE evaluates the ground-state electronic structure, total

electron energy, andion-ion interactions neglected by the Born-Oppenheimer ap-

proximations. It calculates orces on the ions and many other relevant properties,

and also supports geometry optimization and a range of additional tasks.

2.2.1 The pw.x input file

pw.x reads an input file that specifies the atomic positions, the modeling param-

eters, and selects the desired kind of calculation. In the following some snippets

from QE input files, with comments on the right side of the pages. Those are from

a relax (Relaxation) simulation, except for the CELL section which is peculiar of

vc-relax (Variable Cell Relaxation) simulations.

&CONTROL

calculation = ’relax’

prefix = ’CNT_12_0_2_Cu_random_relaxed’

outdir = ’./OUTPUTS/’

pseudo_dir = ’./pseudos’

tprnfor = .true.

tstress = .true.

etot_conv_thr = 1e-4

forc_conv_thr = 1e-4

/

Control section: general instruc-

tions about the kind of calculation,

file names, directories, and conver-

gence thresholds.
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&SYSTEM

ibrav = 6

A = 21.0

C = 8.541458542294

nat = 97

ntyp = 2

ecutwfc = 60.0

ecutrho = 480.0

occupations = ’smearing’

smearing = ’mp’

degauss = 0.0001

/

System section: lattice kind and

parameters, number and types of

atoms, energy cutoffs, and smear-

ing settings.

&ELECTRONS

conv_thr = 1.0e-10

mixing_beta = 0.5

startingwfc = ’atomic+random’

/

Electronic parameters: SCF

convergence threshold, mixing fac-

tor, and initial guess for the wave-

functions.

&IONS

ion_dynamics = ’bfgs’

/

Ions section: parameters for ionic

relaxation or molecular dynamics

simulations.

&CELL

cell_dynamics = ’bfgs’

press = 0.2

cell_dofree = ’z’

/

Cell section: parameters for cell

optimization, used in variable-cell

relaxations.

ATOMIC_SPECIES

C 12.011 C.pbe-n-kjpaw_psl.1.0.0.UPF

Cu 63.546 Cu.pbe-kjpaw.UPF

Atomic species section: spec-

ifies the types of atoms, their

masses, and the names of the

files containing the pseudopoten-

tials used.

ATOMIC_POSITIONS {angstrom}

C 1.5240257290e+01 1.0500000000e+01 1.200...

C 1.4604962079e+01 1.2870002938e+01 1.422...

C 1.5078702546e+01 1.1726866125e+01 2.136...

...

Cu 1.34051250e+01 1.615751250e+01 3.05782...

Atomic positions section: lists

the coordinates of each atom in the

unit cell.

K_POINTS automatic

1 1 25 0 0 0

k-points section: specifies the k-

point mesh of the 1BZ, that sets

the fineness of the sampling of the

electronic bands.

2.2.2 The pw.x output file

The output file generated by pw.x contains detailed information about the calcu-

lation, including SCF steps, geometry optimization steps, the final total energy,

forces on atoms, the stress tensor, and other relevant properties. The following

snippets are from a relax simulation.
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Initial potential from superposition of free atoms

starting charge 394.9957, renormalised to 395

negative rho (up, down): 2.650E-03 0.000E+00

Starting wfcs are 393 randomized atomic wfcs

Checking if some PAW data can be deallocated...

total cpu time spent up to now is 187.4 secs

Self-consistent Calculation

iteration # 1 ecut= 60.00 Ry beta= 0.50

Davidson diagonalization with overlap

ethr = 1.00E-02, avg # of iterations = 2.0

negative rho (up, down): 2.704E-03 0.000E+00

total cpu time spent up to now is 548.4 secs

total energy = -1924.52084521 Ry

estimated scf accuracy < 72.77415601 Ry

iteration # 2 ecut= 60.00 Ry beta= 0.50

...

iteration # 32 ecut= 60.00 Ry beta= 0.50

Davidson diagonalization with overlap

ethr = 1.53E-13, avg # of iterations = 4.9

negative rho (up, down): 3.996E-03 0.000E+00

total cpu time spent up to now is 10367.5 secs

End of self-consistent calculation

After listing the input pa-

rameters, the output file

shows the progress of the

SCF calculation, the to-

tal energy at each itera-

tion, the convergence sta-

tus, and the final energy

for that configuration.

The first SCF convergence

is usually more difficult to

achieve because it starts

from a random guess for

the wavefunctions.
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k = 0.0000 0.0000 0.0000 (199335 PWs) bands (eV):

-21.5845 -21.1122 -21.0888 -20.7791 -20.7316 -20.214...

-20.0063 -19.6510 -19.6445 -19.6214 -19.6160 -19.333...

...

-0.2581 0.0905 0.0999 0.7219 0.7400 0.7910...

1.2751 1.4573 1.8137 1.9627 2.0048 2.0214...

2.1373 2.2111 2.3711 2.5073 2.5973 2.6388...

2.9510 2.9845 3.0880 3.1203 3.1427 3.1958

k = 0.0000 0.0000 0.0983 (199423 PWs) bands (eV):

-21.5824 -21.1099 -21.0865 -20.7771 -20.7293 -20.23...

-19.9134 -19.7610 -19.7320 -19.5301 -19.5014 -19.42...

-19.2420 -19.1738 -19.1529 -18.7995 -18.7758 -18.57...

...

the Fermi energy is -1.3407 eV

! total energy = -1982.92319363 Ry

total all-electron energy = -10625.033544 Ry

estimated scf accuracy < 6.3E-11 Ry

smearing contrib. (-TS) = 0.00000135 Ry

internal energy E=F+TS = -1982.92319498 Ry

The total energy is F=E-TS. E is the sum of the following contributions:

one-electron contribution = -10573.36847749 Ry

hartree contribution = 5357.16692043 Ry

xc contribution = -464.48534875 Ry

ewald contribution = 4386.00695348 Ry

one-center paw contrib. = -688.24324266 Ry

convergence has been achieved in 32 iterations

negative rho (up, down): 3.996E-03 0.000E+00

Once the SCF cycle is fin-

ished, meaning that the

energy change between two

consecutive iterations is

below the specified thresh-

old (10−10Ry), the out-

put file displays the final

results of the calculation:

electronic bands, Fermi en-

ergy, forces on atoms, and

the stress tensor.
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Forces acting on atoms (Cartesian axes, Ry/au):

atom 1 type 1 force = -0.00025336 0.00...

atom 2 type 1 force = 0.00315002 -0.00...

...

Total force = 0.117312 Total SCF correction...

Computing stress (Cartesian axes) and pressure

negative rho (up, down): 3.996E-03 0.000E+00

total stress (Ry/bohr**3) ...

0.00000748 -0.00000148 -0.00000044 ...

-0.00000148 0.00000451 -0.00000098 ...

-0.00000044 -0.00000098 0.00002021 ...

... (kbar) P= 1.58

... 1.10 -0.22 -0.07

... -0.22 0.66 -0.14

... -0.07 -0.14 2.97

BFGS Geometry Optimization

Energy error = 0.0E+00 Ry

Gradient error = 6.2E-02 Ry/Bohr

Number of SCF cycles = 1

Number of BFGS steps = 0

Energy new = -1982.9231936334 Ry

New trust radius = 0.0720412010 bohr

New conv_thr = 1.0E-10 Ry

ATOMIC_POSITIONS (angstrom)

C 15.2401232151 10.5006327460 0...

C 14.6066290001 12.8689609508 1...

...

Relaxation calculations

(relax, vc-relax) show

the updated atomic po-

sitions after each step,

obtained using the BFGS

algorithm. Note that

this is not a molecular

dynamics simulation:

the movements do not

represent physical tra-

jectories, they are purely

numerical steps to lo-

cate the minimum-energy

configuration.

Here follows one last frame from a vc-relax simulation.
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Energy error = 2.7E-04 Ry

Gradient error = 1.7E-03 Ry/Bohr

Cell gradient error = 4.1E-01 kbar

Number of SCF cycles = 4

Number of BFGS steps = 3

Enthalpy old = -884.9679280048 Ry

Enthalpy new = -884.9681994660 Ry

CASE: enthalpy _new < enthalpy _old

New trust radius = 0.0077912509 bohr

New conv_thr = 2.7E-12 Ry

New unit-cell volume = 12721.53201 a.u.^3 ( 1885.1365...

Density = 0.50784 g/cm^3

CELL_PARAMETERS (alat= 39.68424862)

1.000000000 0.000000000 0.000000000

0.000000000 1.000000000 0.000000000

0.000000000 0.000000000 0.203556479

When performing a

variable-cell relaxation

(vc-relax), a few differ-

ences appear in the output

file, as the cell parameters

are also optimized.

At this stage, the output file may continue with additional ionic steps until

convergence is reached, or it may terminate if the maximum number of ionic steps

is reached without achieving convergence. The calculation can be restarted from

the last configuration using the restart option in the &CONTROL section of the

input file.

Upon completion, several files are generated in the specified output directory,

containing information on KS states, charge density, potentials, and other relevant

data for restarting, further analysis, or post-processing.
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Chapter 3

Setup

We carry out input file preparation and low-memory data analysis on our per-

sonal computer. We perform heavy calculations, including simulations and post-

processing, running QE on a parallel-computing cluster, provided by Indaco, a

high-performance computing facility at Università degli Studi di Milano.

3.1 The atomic configuration

We generate the initial atomic configuration of the (12, 0) CNT for QE simulations

with a custom C++ program, see Appendix A, that outputs atomic coordinates

in standard XYZ format, see Fig. 3.1 for a few examples. This program takes

as input the chiral indices (𝑛, 𝑚), the number of unit cell repetitions, and the

lattice parameter. This program constructs the CNT by rolling a graphene sheet

according to the selected chirality, placing C-atoms at the appropriate positions

in three-dimensional space. It also provides the correct length of the 𝑧 box-side

to use in calculations in order to properly maintain the PBC.

Since the structural parameters (e.g. the C-C spacing) assumed by the

CNT generator are not precisely the optimal ones, the CNT structure needs

to undergo a full vc-relax to clear the internal strains and reach its optimal

equilibrium geometry. The length of the periodically repeated CNT unit amounts

to 𝐿 = 854 pm. The CNT diameter is 948 pm. As a successive step, we insert

the Cu adatom, and execute a full relaxation of its position, as well as of those

of all CNT atoms.
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Figure 3.1: CNT generated with our custom C++ code, from

left to right a zigzag, chiral, and armchair.

3.2 Setting up the calculations

To have meaningful adsorption data we need to define the parameters to be used

in QE. Here we report the so-called convergence tests needed for setting the

correct input parameters.

3.2.1 Convergence tests

As discussed in Sec. 2.1.6, several numerical approximations affect the accuracy

of DFT simulations. To ensure that the uncertainty on the total energy remains

below 0.01 eV, we perform systematic convergence tests on basis energy cutoffs,

tube-tube distance, smearing and k-points mesh density.

The scheme we adopt is to perform numerous SCF calculations on a specific

structure, varying one parameter at a time, while keeping the others fixed. The

total energy for each tested value is compared with the one of a reference system,

with that parameter set to obtain a highly precise, very expensive, calculation.

3.2.2 Energy cutoff

The basis-set convergence is a critical task for any quantum-mechanical simu-

lation. For plane-wave DFT calculations, this translates in one parameter, the

energy cutoff ecutwfc, which controls the plane-wave basis set. We perform a

set of calculations on a C–Cu dimer with increasing cutoff values: the resulting
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Figure 3.2: (a): the total SCF energy estimation of a C–Cu

dimer as a function of the wavefunction energy cutoff. (b):

the SCF energy precision at each cutoff, obtained by taking

the 200 Ry-cutoff simulation as a reference. The final adopted

cutoff is highlighted.

total energy is reported in Fig. 3.2(a).

For PAW pseudopotentials, the density cutoff ecutrho is usually set to

eight times the wavefunction cutoff. A finer sampling modestly increases the

computational cost but prevents aliasing effects and guarantees a well-defined

Hamiltonian.

Because the single Cu atom, with its localized 𝑑-electrons, dominates the

basis-set requirements, the error estimated on the C–Cu dimer can be directly

transferred to the Cu/CNT system, neglecting errors coming from C-atoms.

Eventually, we adopt a 60 Ry cutoff, which results in a deviation on the

total energy of

𝜀basis = 3.21 × 10−4 Ry ≃ 4.5 meV , (3.1)

as illustrated in Fig. 3.2(b).

3.2.3 Cell size

Periodic boundary conditions along 𝑧 reproduce the nanotube’s intrinsic peri-

odicity. In the 𝑥𝑦 plane, however, replicas of the tube interact unless sufficient

vacuum is added, leading to artificial lateral stresses.

We adopt a 2.1 nm side length of the simulation box that gives a negligible

8 × 10−6 Ry (∼ 0.1 meV) error, by comparing with a larger 4 nm cell. The

lateral nanotube-nanotube interactions, see Fig. 2.1, can affect dramatically the

adsorption properties of adatoms, especially when placed outside the CNT. To
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Figure 3.3: Total scf energy estimation of a pure (12, 0) re-

laxed CNT unit cell as a function of the lateral (𝑥 and 𝑦,

orthogonal to the CNT axis) box size. The CNT width is

represented by a green vertical line. Highlighted point: the

selected size. The relative error estimation is obtained by tak-

ing the 4 nm simulation as a reference.

⎛⎜⎜⎝
−0.45 0.00 0.00

−0.45 0.00

0.24

⎞⎟⎟⎠ 𝑃 = −0.22

Table 3.1: Residual stress tensor and total pressure acting on

the relaxed CNT, expressed in kbar.

prevent these spurious effect, we prefer to keep the CNT replicas well spaced,

even at the cost of a more expensive basis set. The relaxed structure exhibits

only negligible interactions with its periodic images, see Tab. 3.1, indicating that

the chosen cell size is sufficient to prevent artificial effects on the adsorption

properties. The cell size in the 𝑧 direction is determined later by zeroing the

axial stress of a pure (no adsorbate) CNT, as discussed below.

3.2.4 k-point sampling

Accurate 1BZ sampling along the tube axis is essential. We recalculate the total

energy of the pristine relaxed nanotube for various different k-points meshes along

𝑘𝑧 axis. The purpose of these simulations is to ensure bulk-like behavior in
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Figure 3.4: (a): the total SCF energy estimation of the pris-

tine 0.84 nm (12, 0) CNT as a function of the number of k

points in the adopted mesh. (b): the SCF energy precision

for each mesh, obtained by taking the 90 k points-simulation

as a reference. The final adopted mesh is highlighted.

the direction 𝑧 of CNT periodicity. The mesh we adopt will guarantee reliable

electronic-structure results while keeping the computational effort under control.

Eventually, we adopt a 25 k-points mesh, see Fig. 3.4 responsible for an estimated

error contribution of

𝜀mesh = 9.23 × 10−5 Ry ≃ 1.3 meV . (3.2)

In practice, thanks to symmetry, the mesh consists of only 13 irreducible k-points.

3.2.5 Smearing

To improve electronic convergence in metallic or small-gap systems, a smearing

technique is employed. Smearing distributes occupation numbers around the

Fermi level, avoiding discontinuities in the electronic density that can hinder self-

consistent convergence. The width of this distribution, defined by the parameter

degauss, controls the energy broadening, directly affecting SCF stability. We

adopt a 0.0001 Ry smearing, resulting in an estimater error of

𝜀smearing = 9.20 × 10−5 Ry ≃ 1.3 meV . (3.3)

.

We estimate the total error on the total energy as a composition of basis,

mesh and smearing contribution:

𝜀tot = 𝜀basis + 𝜀mesh + 𝜀smearing ∼ 7 meV . (3.4)
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Figure 3.5: (a): the total SCF energy estimation of a 0.42

nm (12, 0) Cu/CNT as a function of the smearing degauss.

(b): the SCF energy precision for each degauss), obtained

by taking the 10−6 Ry-smearing calculation as a reference.

3.3 CNT structural relaxation

The pristine tube needs to be relaxed to obtain a fully relaxed configuration. We

perform the relaxation in vc-relax mode, where both ions and cell parameters

are free to change. To check the convergence of the relaxation, three parameters

are monitored at each step:

• Total energy difference: The change in total energy between steps should

fall below 10−4 Ry.

• Maximum force: The largest force acting on any atom should be less

than 10−4 Ry/Bohr.

• Pressure: The pressure should be less than 0.2 kbar.

Convergence is considered achieved when all these criteria are satisfied, ensuring

that the relaxed structure is close to the true minimum of the potential energy

surface, with negligible residual forces and stress.

The obtained unitary cell is the starting point of the simulation. Comparing

identical bonds around the tube the precision is at Fermi scale. The singular

elementary cell will be doubled to have a bigger hypercell to accommodate the

copper atom avoiding self-interactions.
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Simulation difficulties The hardware bottleneck encountered in running sim-

ulations is the RAM usage. On high-memory nodes, parallel execution of QE

simulations is efficient, with computational resources allocated to balance accu-

racy and runtime. Luckily big-memory nodes are usually available on Indaco,

and the queue system works well. However, the 5-days wall-time limit sometimes

requires a job restart. A restart is handled smoothly by the QE restart capabili-

ties, but of course it pays the price of a significant amount of wasted computing

resources.

31



Chapter 4

Characterizing the Cu/CNT

system

Our work core is to identify the energetically most favourable adsorption site for

Cu adatom on CNT (12,0). From purely geometrical considerations, as antici-

pated in the Introduction, we identify eight non-equivalent adsorption positions

for the Cu adatom, namely: T, B1 (axial bridge), B2 (oblique bridge), and H,

differentiating between internal (int) and external (ext) adsorption, see Fig. 1.5.

In addition to them, for the sake of checking the effect of geometrical dis-

tortions of the tube, we consider a Cu adatom initially randomly positioned with

respect to the C-network, both internally and externally. Throughout a struc-

tural relaxation, it is likely to lead toward the most stable site. Our data are

gathered in Tab. 4.1.

The physical quantity we need to estimate is the adsorption energy 𝐸ads,

which we evaluate as a difference between total adiabatic potential energies, as

follows:

𝐸ads = 𝐸Cu/CNT − (𝐸Cu + 𝐸CNT) . (4.1)

Here 𝐸Cu/CNT is the adiabatic potential energy of the fully relaxed Cu+CNT

system at the local adsorption minimum: this quantity depends on the relative

position of the Cu atom with respect to the CNT, and accounts also for the

structural relaxation of the CNT itself. 𝐸Cu is the adiabatic potential energy of a

single isolated atom of copper. 𝐸CNT is the adiabatic potential energy of the fully

relaxed CNT, without any Cu adatom. These 3 energies are evaluated in exactly

the same simulation cell, with exactly the same basis set and other simulation

parameters, to prevent systematic errors.

In the following sections we report the methodology and simulations leading

to the data reported in Tab. 4.1 for the adsorption of a Cu atom on a (12, 0)
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Site 𝐸ads (eV) 𝑑Cu-C (pm)

ext-T → B1

ext-B1 −0.61 213

ext-B2 −0.50 215

ext-H −0.30 231

int-T −0.13 213

int-B1 −0.12 221

int-B2 −0.13 228

int-H −0.10 244

Table 4.1: Adsorption energy 𝐸ads in eV, and average distance

𝑑Cu-C between Cu and the nearest neighboring C-atoms, for

external (top) and internal (bottom) adsorption.

CNT.

4.1 External adsorption

We find the ext-T site to be unstable. As illustrated in Fig. 4.1(a), we place

initially the Cu atom directly above a C-atom, and we relax the system. The

adatom moves reaching the ext-B2 position, Fig. 4.1(c). To further confirm the

instability of the T-position, we start a new relaxation placing Cu slightly tilted

toward the hexagon center, Fig. 4.1(b). The final result is the same, confirm-

ing the top site instability towards the neighboring axial bridge (B1) site. The

stability of the ext-B1-site is confirmed by another independent random search,

starting with Cu placed randomly in the vicinity of the CNT surface between all

the sites.

The ext-B2 site, see Fig. 4.2, geometrically not equivalent to ext-B1 due

to the tube’s curvature, is also a locally stable adsorption site, which exhibits a

different adsorption energy. As reported in Tab. 4.1, ext-B2 is less stable than ext-

B1, with a relatively small but significant energy difference exceeding 100 meV.

The hollow site, see Fig. 4.3, is also a stable adatom position, but its binding

energy lies significantly (approximately 300 meV) above B1.

4.2 Internal adsorption

The main novelty of the internal adsorption sites is that they are all stable local

minima (including the int-T site depicted in Fig. 4.4), with quite similar ad-
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(a) (b) (c)

Figure 4.1: (a) and (b): Initial configurations for Cu on a

(12, 0) CNT. (a) is an ext-T position; (b) is near an ext-T

slightly tilted toward the hexagon center. (c) The final int-

B1 relaxed structure obtained at the end of both relaxations

starting from the unstable initial configurations of panels (a)

and (b).

Figure 4.2: ext-B2 adsorbed Cu, relaxed structure from the

simulations

Figure 4.3: Relaxed external hollow (ext-H) site for Cu on a

(12, 0) CNT.
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Figure 4.4: Relaxed int-T Cu adsorption on CNT (12, 0).

Even though the ext-T site is unstable, the int-T site is a

proper local minimum of the adiabatic potential, thus we pre-

dict it to be a valid adsorption site. In practice, this site has

nearly the same adsorption energy as the other internal sites.

sorption energies. This observation hints at a much flatter inside lateral energy

landscape than when the adatom threads the CNT at the outside.

Binding energies are much lower than the corresponding ones for the external

sites. It seems that the curvature pushes a significant fraction of the carbon 𝜋

orbitals outside the CNT, thus decreasing the amount of electrons available to

create bonds with copper in the internal region.

4.3 Structural analysis

Curvature also affects the equilibrium distances between the Cu atom and the

neigboring C-atoms on the CNT surface. We observe a larger distance in the

internal sites, associated to weaker bonding energy, as reported in Tab. 4.1.

In addition to the Cu-C bonding distance, it is also interesting to examine

the deformations of the CNT upon Cu adsorption. For this purpose, we conduct

a geometrical analysis of the relaxed Cu/CNT compared to the pristine CNT.
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Figure 4.5: Total atomic displacement, TAD, of each C-atom

after Cu adsorption at various sites, both externally and in-

ternally to the tube. Atoms are colored accordingly to their

TAD using the color map. (a) ext-B1; (b) ext-B2; (c) ext-H;

(d) int-T; (e) int-B1; (f) int-B2; (g) int-H.

4.3.1 Total atomic displacement

To illustrate how the CNT deforms to accommodate the Cu atom, we estimate

the total atomic displacement of each C-atom, defined as the difference between

its position before and after Cu-adsorption. Figure 4.5 reports the color map of

the total atomic displacement, TAD.

Displacement vectors are computed with respect to the initial configuration

of the relax calculation. We follow the common practice to correct the final

configuration by fixing the center of mass of the C atoms, ensuring a consistent

and translation-invariant definition of the molecular structure.

In most of the seven cases, only atoms near the adsorption site are displaced.

Minor changes are observed all over the CNT, showing that the whole structure

is affected by Cu adsorption, see Fig. 4.5. This global deformation is probably an

artifact of the periodically repeated Cu along the CNT axis, a finite ”Cu doping”

with a linear density of Cu atoms amounting to 0.12 nm−1.
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Figure 4.6: Radial deformation of CNT induced by Cu sitting

at various adsorption sites. Atoms are colored according to

the color map. Positive values (blue) indicate radial expan-

sion, while negative (red) values refer to compression. This

figure does not consider the Cu atom displacement. (a) ext-

B1; (b) ext-B2; (c) ext-H; (d) int-T; (e) int-B1; (f) int-B2;

(g) int-H.

4.3.2 Radial deformation

Figure 4.6 shows a color map of the radial displacement of the CNT upon Cu

adsorption. The radial displacement for each C atom is defined as

Δ𝑟 =
√︁
𝑥2 + 𝑦2 −

√︃
𝑥20 + 𝑦20 , (4.2)

where 𝑥 and 𝑦 are the final coordinates perpendicular to the tube axis, and

𝑥0 and 𝑦0 are those of the pristine CNT. As in the previous section 4.3.1, the final

coordinates are translated to match the same center of mass of the C-atoms.

By examining the radial deformation induced by the metal adsorbate, we

note that when Cu adsorbs externally, the C-atoms at the adsorption site are

expanded, and so are their diametrically opposed counterparts. Conversely, a

contraction is observed at the ”lateral” C-sites, but milder for oblique bridge-

adsorption and hollow. On the other hand, as expected, internal adsorption leads

to a radial contraction of the C-atoms near Cu and on opposite to the adsorption

site, accompanied by a slight expansion of the remaining C-atoms. We note that
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⎛⎜⎜⎝
−0.45 0.02 −0.04

−0.45 0.01

1.99

⎞⎟⎟⎠
ext-B1

⎛⎜⎜⎝
−0.51 0.03 −0.01

−0.49 0.02

1.56

⎞⎟⎟⎠
ext-B2

⎛⎜⎜⎝
−0.47 0.06 0.00

−0.47 0.00

1.46

⎞⎟⎟⎠
ext-H

⎛⎜⎜⎝
−0.45 −0.05 −0.01

−0.45 −0.01
1.25

⎞⎟⎟⎠
int-T

⎛⎜⎜⎝
−0.45 −0.04 0.00

−0.45 0.00

1.43

⎞⎟⎟⎠
int-B1

⎛⎜⎜⎝
−0.45 −0.03 0.00

−0.46 0.00

1.26

⎞⎟⎟⎠
int-B2

⎛⎜⎜⎝
−0.45 −0.03 0.00

−0.45 0.00

1.52

⎞⎟⎟⎠
int-H

Table 4.2: Stress tensors in kbar computed via QE scf simu-

lations from the relaxed Cu+CNT structures of all adsorption

sites.

the radial deformation from internal adsorption is similar for top and bridge sites,

but weaker for hollow. This ovalization effect has been identified in other works

[26].

4.3.3 Stress tensor

We estimate the stress tensor evaluated at the end of QE simulations for Cu+CNT.

We conduct all the simulations with a non-variable cell obtained from the pristine

tube calculations, see Fig. 4.2.

Compared to the pristine tube (see Tab. 3.1), the 𝑧𝑧 axial component in-

creases up to ∼ 2 kbar for certain adsorption sites, indicating that the CNT

structure tends to elongate slightly to accommodate the adatom.

Tiny off-diagonal shear components appear in the tensor. The interaction

between the cell-asymmetric Cu and other periodic images of the CNT in the 𝑥

and 𝑦 directions is responsible for the 𝑥𝑦 component. The 𝑥𝑧 and 𝑦𝑧 components

represent shear stress on the simulation-box faces that glue together the periodic

CNT image sections.

In a real scenario with a long CNT, the 𝑧 components of the stress tensor

would be relieved through likely asymmetric local expansion of the CNT around
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(a)                                                          (b)

Figure 4.7: Electronic bands comparison between pristine

CNT (a) and Cu/CNT ext-B1 adsorbate (b). Fermi level

is set at 0 eV. 𝐿 represent the 𝑧 axis length of the simulation

cell.

the adatom, which will lead to a little bending of the CNT. The other components

are non-physical and do not correspond to any actual structural adaptation of

the tube to the adsorption of Cu.

4.4 Electronic structure and charge analysis

To explore the effect of Cu adsorption on the electronic nature of the CNT, we

examine the band structure and charge distribution of both pristine and Cu-

decorated CNTs. Band structure calculations are carried out to identify modifi-

cations in the electronic states induced by Cu. In addition, we use Bader charge

analysis to quantify charge transfer between the Cu atom and the CNT. The

results reveal that Cu acts as an electron donor, transferring charge to the nan-

otube and inducing a transition from a small-gap semiconducting behavior to a

metallic character.

4.4.1 Electronic bands

We compute the band structure for the pristine CNT, which exhibits semicon-

ducting nature with a 0.056 eV band gap, as shown in Fig. 4.7(a). Since the calcu-
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Site charge on Cu (𝑒)
ext-B1 +0.28 ± 0.05

ext-B2 +0.28 ± 0.05

ext-H +0.34 ± 0.05

int-T +0.26 ± 0.05

int-B1 +0.26 ± 0.05

int-B2 +0.26 ± 0.05

int-H +0.29 ± 0.05

Table 4.3: Cu-valence charge difference with respect to the

nominal valence charge of a free atom, computed with Bader’s

method. Software provided by Henkelman Research Group

[9, 20, 23, 2].

lations are performed in a duplicated minimal cell, the band folding phenomenon

can be observed at 𝑘𝑧 = 𝜋/𝐿, in particular in two filled bands of Fig. 4.7(a). All

the bands exhibit a double degeneracy arising from the presence of additional

spatial symmetries besides the translational symmetry. Upon the introduction

of a single (periodically repeated) Cu atom adsorbed on the CNT, significant

modifications in the electronic structure are observed. Notably, the DFT calcula-

tions reveal the emergence of a Cu-derived electronic band near the Fermi level,

as displayed in Fig. 4.7(b). We observe a narrow dispersion for this Cu-related

band, suggesting a non-trivial interaction between Cu replicas. This additional

band crosses the Fermi energy, inducing metallic behavior in this system. A CNT

band is injected a certain amount of electrons too, thus acquiring metallic behav-

ior. The results indicate that the presence of the Cu atom lifts the Fermi energy,

and introduces new states that affect the low-energy electronic properties of the

adsorbed CNT.

In the adsorbed system, band folding is suppressed because adsorption re-

duces the translational symmetry, effectively doubling the size of the minimal

unit cell. The degeneracy is lifted, as the presence of the Cu-atom breaks the

additional symmetries.

4.4.2 Bader’s charge analysis

In forming bonds, atoms delocalize their electrons within the whole structure

to extended orbitals. This delocalization is associated to a kinetic -energy drop

that makes bonding energetically favored. Once electrons are not localized on a

specific atom, the remaining electronic charge on each atom can be different from
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Research Site 𝐸ads (eV) 𝑑Cu-C (pm)

T −0.23 218

Hou 2023 H −0.30 209

B −0.23 215

T −0.29 206

Tang 2017 H −0.13 239

B −0.25 217

Table 4.4: DFT-PBE results for Cu adsoprtion on a single

graphene layer, as available in the literature [10, 24].

the atomic state.

Richard Bader developed a method to partition the molecular electron den-

sity into atomic basins, defined by zero-flux surfaces in the gradient of the electron

density. This approach allows one to determine the residual charge on the Cu

atom, which is crucial for characterizing the nature of the bonding. The method is

widely used, as it provides a consistent partitioning of the total electronic charge,

ensuring charge conservation.

For that purpose, we employ the projwfc.x utility from QE to project the

Kohn–Sham states onto atomic wavefunctions, thereby reconstructing the atom-

projected density of states (PDOS) and extracting charge information.

We propose a Bader’s analysis and projwfc.x projections to the Cu/CNT

under study. Results from the former appear more reliable. The precision of the

charge assignment is estimated to be around 0.05 𝑒, as achieving an optimal grid

separation was difficult with the program.

The resulting charge on the Cu adsorbate with respect to its valence value

are reported in Tab. 4.3. We note that on all sites the Cu is more positive, hence,

it is donating electrons to the CNT. The charge donation is similar whether Cu

is external or internal, ∼ −0.3 𝑒, but the hollow sites show a larger donation.

4.4.3 Discussion

Here we discuss the energetic and structural features of the Cu-adsorption com-

pared to graphene [24, 10], and different CNTs, for example the (8, 0) [1, 26].

Indeed, the only available data from the literature regards external adsorption on

(8, 0) CNTs, with a greater curvature. Indeed its diameter is as small as 630 pm,

compared to 950 pm of (12, 0).
The two considered works on Cu-graphene, summarised in Table 4.4, re-

ferred to DFT data for Cu-adsorption on a graphene layer for top (T), bridge
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Research Best site 𝐸ads (eV) 𝑑𝐶𝑢−𝐶 (pm)

Yang 2024 B1 −0.91 208.7

Aasi 2020 B1 −0.75 213

Xu 2023 B1 −0.53 NA

Table 4.5: Literature data available for Cu-adsorption on

(8,0) CNT [26, 1, 25].

.

Figure 4.8: Best adsorption site for Cu on a (8,0)-CNT, lateral

views. Bond lengths and diameter are shown, taken from

Ref.[1]

(B), and hollow (H) sites. They employ similar DFT scheme. In particular, we

note that Hou et al. results [10] employed the same functional as us, they use a

smearing parameter (degauss) of 0.2 eV, while we are close to fixed occupation,

and a force threshold (∼ 0.5 Ry/Bohr) which might be too large. Tang et al.

[24] employed spin-polarized DFT with the PBE-PAW approach. Nonetheless,

both groups reports 𝐸𝑎𝑑𝑠 in the same range, although Tang predicts the top as

the best site while Hou finds the hollow as the most stable. On that regard

we note a considerable difference in the Cu-C distance for the H-site that might

explain the difference between the calculations. For T nd B sites, the Cu-C dis-

tance is between 206-218 pm. Their results support the hypothesis that 𝜋-orbital

rehybridization increases the electronic density at the external sites, thereby en-

hancing the bonding strength at these positions at the expense of the internal

ones.

Aasi et al. [1] investigated the catalytic properties of metal-adsorbed (8,0)

CNTs interacting with oxidant hydrogen peroxide. They show the axial bridge

as the most stable for Cu on (8,0)-CNT with a binding energy of 𝐸ads = −0.75
eV, which is considerably less than that estimated by Yang et al.[26]. Aaasi et

al. report slightly asymmetric bond length of 2.14 and 2.12 of Cu bonded to the

two C-atoms, see Fig. 4.8. They also note a longer C-C bonds (0.03% more) and
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a longer diameter for the ring where Cu sits, 6.48 vs 6.33 Å.

We note that the average distance of Cu for the B1 adsorption, 𝑑C–Cu =

213 pm, is in perfect agreement with our value on the (12,0)-CNT. The radial

deformation is in agreement with our calculations. A stronger adsorption on the

(8,0) than on the (12,0) is expected because the latter has a lower curvature.

More in specific, our estimate in the adsorption energy falls in between those on

graphene and the (8,0)-CNT. Furthermore, the (12,0) is able to accommodate

metal atoms inside the tube, suggesting a new design possibility.

4.5 Conclusion

Overall, our DFT calculations suggest that preferred adsorption sites are the

external bridges and hollow. We find that a Cu atom can bind inside the CNT

but the binding energy is as low as 0.13 eV. Nanotube curvature induced effects

are the destabilization of external top site and the strong difference between

internal and external bond strength.

Our results highlight the role of CNT curvature in modulating adsorption

properties, and demonstrate good agreement with prior studies on similar carbon-

based materials. Indeed we show that the binding energy of Cu decreases from

an estimate of 0.75 eV on (8,0) to 0.61 eV on a (12,0)-CNT, although the Cu-C

distance are mostly preserved.

Future work could extend these findings by exploring:

• Adsorption of multiple metals and cooperative effects.

• Functionalized CNTs to enhance binding and electronic response.

• Design of CNT-based catalysts.

• Temperature effects through ab initio molecular dynamics.

• Comparison with experimental spectroscopic and electrochemical data.

These perspectives will further clarify the potential of CNTs as platforms

for catalysis, sensing, and energy storage applications.
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Appendix A

CNT configuration generator

In this appendix we report the full code that we wrote for generating the atomic

positions of an arbitrary single-wall CNT.

#include <cmath>

#include <iostream>

#include <fstream>

#include <vector>

#include <armadillo>

#include <string>

#include <iomanip>

#include <numeric>

// C++17 needed

using namespace std;

using namespace arma;

const double epsilon{0.00001};

int main(int argc, char** argv) {

if (argc < 6 — (argc - 6) ...

return -1;

}

string filename{argv[1]};

ofstream fout(filename, ios::out);

int n{atoi(argv[2])};

int m{atoi(argv[3])};

int repetitions{atoi(argv[4])};

double a{atof(argv[5])};

int NExotics{(argc - 6) / 4};

vector<string> exoticNames(NExotics);

vector<vec> exoticIndexes(NExotics);
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vector<double> exoticDistances(NExotics);

for (int i{}; i < NExotics; i++) {

exoticNames[i] = string(argv[6 + 4*i]);

exoticIndexes[i] = vec({

atof(argv[6 + 4*i + 1]),

atof(argv[6 + 4*i + 2])

});

exoticDistances[i] = atof(argv[6 + 4*i + 3]);

}

vector<vec> points(0);

vec a1 = {1., 0.};

vec a2 = {0.5, sqrt(3.) / 2.};

vec b((a1 + a2) * 2. / 3.);

int nc{-(n + 2*m) / gcd(n+2*m, m+2*n) * repetitions};

int mc{(m + 2*n) / gcd(n+2*m, m+2*m) * repetitions};

vec A = n * a1 + m * a2;

double A2{arma::dot(A, A)};

double sqrtA2{sqrt(A2)};

cout << "Tube width = " << sqrtA2 / M_PI * a << "A" << endl;

vec C = nc * a1 + mc * a2;

double C2{arma::dot(C, C)};

double sqrtC2{sqrt(C2)};

cout << "Tube lenght = " << sqrtC2 * a << "A" << endl;

vec candidateOnGraphene(2);

vec pointOnTube(3);

int minN {min(min(0, n),

min(nc, n + nc))},

maxN {max(max(0, n),

max(nc, n + nc))},

minM {min(min(0, m),

min(mc, m + mc))},

maxM {max(max(0, m),

max(mc, m + mc))};

int counter{};

double relativeProjectionA{}, relativeProjectionC{};

for (int n_i{minN}; n_i < maxN; n_i++) {

for (int m_i{minM}; m_i < maxM; m_i++) {

candidateOnGraphene = n_i * a1 + m_i * a2;

relativeProjectionA = arma::dot(candidateOnGraphene, A) / A2;
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relativeProjectionC = arma::dot(candidateOnGraphene, C) / C2;

if (relativeProjectionA >= -epsilon

&& relativeProjectionA < 1 - epsilon

&& relativeProjectionC >= -epsilon

&& relativeProjectionC < 1 - epsilon) {

relativeProjectionC += epsilon;

pointOnTube(0) = cos(relativeProjectionA * 2. * M_PI) *

sqrtA2 / 2. / M_PI * a;

pointOnTube(1) = sin(relativeProjectionA * 2. * M_PI) *

sqrtA2 / 2. / M_PI * a;

pointOnTube(2) = (relativeProjectionC - floor(relativeProjectionC)

- 0.5) *sqrtC2 * a;

points.push_back(pointOnTube);

counter++;

candidateOnGraphene = n_i * a1 + m_i * a2 + b;

relativeProjectionA = arma::dot(candidateOnGraphene, A) / A2;

relativeProjectionC = arma::dot(candidateOnGraphene, C) / C2 + epsilon;

pointOnTube(0) = cos(relativeProjectionA * 2. * M_PI) *

sqrtA2 / 2. / M_PI * a;

pointOnTube(1) = sin(relativeProjectionA * 2. * M_PI) *

sqrtA2 / 2. / M_PI * a;

pointOnTube(2) = (relativeProjectionC - floor(relativeProjectionC)

- 0.5) * sqrtC2 * a;

points.push_back(pointOnTube);

counter++;

}

}

}

cout << "Total points generated: " << counter + NExotics << endl;

fout << counter + NExotics << endl;

fout << scientific;

fout << setprecision(10);

fout << "#Width: " << sqrtA2 / M_PI * a

<< " ---Lenght: " << sqrtC2 * a << endl;

for (auto v : points) {

fout << "C"

<< setw(20) << v(0)

<< setw(20) << v(1)

<< setw(20) << v(2)
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<< endl;

}

for (int i{}; i < NExotics; i++) {

candidateOnGraphene = exoticIndexes * a1 + exoticIndexes * a2;

relativeProjectionA = arma::dot(candidateOnGraphene, A) / A2;

relativeProjectionC = arma::dot(candidateOnGraphene, C) / C2 + epsilon;

fout << exoticNames[i]

<< setw(20) << (cos(relativeProjectionA * 2. * M_PI)) *

(sqrtA2 / 2. / M_PI * a + exoticDistances[i])

<< setw(20) << (sin(relativeProjectionA * 2. * M_PI)) *

(sqrtA2 / 2. / M_PI * a + exoticDistances[i])

<< setw(20) << (relativeProjectionC - floor(relativeProjectionC)

- 0.5) * sqrtC2 * a

<< endl;

}

fout.close();

return 0;

}
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