
Facoltà di Scienze e Tecnologie

Laurea Triennale in Fisica

Tight-binding modeling
of titanium

Relatore: Prof. Nicola Manini

Correlatore: Dott.sa Simona Achilli

Andrea Vogler

Matricola n◦ 966873

A.A. 2023/2024

Codice PACS: 71.20.Be





Tight-binding modeling
of titanium

Andrea Vogler

Dipartimento di Fisica, Università degli Studi di Milano,
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Abstract

We develop a code to compute the electronic states and energies and

total energy of titanium-only structures the tight-binding method. We

adopt the parameterization of Ref. [1] for the Slater-Koster integrals and

construct the tight-binding matrices. We obtain the k-dependent electron

eigenenergies by solving the secular equation, thus we can construct the

electronic bands. We evaluate the total energy as the sum of the occu-

pied band energies. We repeat this process for different lattices and lattice

spacings to establish the equilibrium structure for a titanium crystal. We

determine the stablest structure to be the 𝛼 hexagonal close-packed crys-

tal with 𝑐
𝑎
= 1.618 and 𝑎 = 2.941, not far from experiment. We utilize

the same method to study titanium molecules and obtain non-physical re-

sults, proving that this parameterization retains a quite narrow range of

applicability.
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1 Introduction

Titanium is the second transition metal in the periodic table. At room tempera-

ture and pressure it is a crystalline solid with a hexagonal close-packed structure.

In this work, we study the electron motion within the adiabatic approximation,

and we aim to compute the electronic bands of a titanium crystal through the

tight-binding method. For this purpose we adopt the parameterization provided

in Ref. [1] to evaluate the two-center Slater-Koster integrals [2].

We then construct and diagonalize the tight-binding matrix to obtain the

single electron eigenenergies, which we use to calculate the total energy per atom.

At this point, we study how the total energy changes as we alter the crystal lattice

type and the cell volume. The equilibrium structure corresponds to the minimum

of this total energy.

2 Electrons in crystals

In this section we revise the key aspects of the tight-binding model for the elec-

tronic bands of solids.

2.1 Crystal structures

Crystalline solids are characterized by discrete translational symmetry. This

means that, assuming the crystal is large enough to be considered infinite, we

can identify a translation lattice, called the Bravais lattice, such that, given a

point r within the crystal, equal physical properties are observed at all points

r’ = r +R, where R is a vector of the Bravais lattice. We can obtain all vectors

of the Bravais lattice as combinations of three primitive vectors:

R = 𝑛1a1 + 𝑛2a2 + 𝑛3a3, (1)

where 𝑛1, 𝑛2, 𝑛3 are integers. We can then identify a primitive crystalline cell as

the smallest volume that contains all translationally inequivalent points. There

is an infinite number of primitive cells in a lattice; for example, we consider the

parallelepiped generated by the primitive vectors. A primitive cell may contain

one or more atoms depending on the crystal; if the cell contains more than one

atom, we need to introduce a basis: a list of the coordinates and types of all

atoms within the cell. To fully describe the structure of a crystal we need its

Bravais lattice and its basis.
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2.2 The reciprocal lattice

In order to study the motion of electrons in crystals, we introduce the reciprocal

lattice. When we calculate the Fourier expansion of any periodically repeating

crystal property, all components vanish except for those at k points whose 𝑒𝑖kr

term has the same periodicity as the crystal. We will call these special k points

G. In order to maintain function periodicity, the G points must be such that

𝑒𝑖G·R = 1, hence:

G = 𝑙1b1 + 𝑙2b2 + 𝑙3b3, (2)

where 𝑙1, 𝑙2, 𝑙3 are integers, and

b1 =
2𝜋

𝑉𝑐
a2 × a3, b2 =

2𝜋

𝑉𝑐
a3 × a1, b3 =

2𝜋

𝑉𝑐
a1 × a2, (3)

where 𝑉𝑐 = (a1 × a2) · a3 is the volume of the primitive cell. We see that the

G points form a Bravais lattice in the reciprocal space, and b1, b2, b3 are its

primitive vectors.

2.3 Independent-electron methods and Bloch’s theorem

We operate within the adiabatic approximation, where the atomic nuclei assume

specific positions within the crystal and are considered still, so their kinetic energy

can be neglected. Thus we can write the Schrödinger equation for electron motion:

𝐻Ψ(w) = [𝑇𝑒 +𝑉𝑒𝑒 +𝑉𝑛𝑒]Ψ𝑒 (w) = 𝜀𝑒Ψ𝑒 (w), (4)

where 𝑇𝑒 is the electronic kinetic energy, 𝑉𝑒𝑒 is the electron-electron Coulomb

potential, 𝑉𝑛𝑒 is the nuclei-electron Coulomb potential, and w is a variable that

contains the positions and spins of all electrons. This equation is generally too

complicated to solve due to the large number of electrons in the crystal, however

it can be approached through some approximate mean-field one-electron method,

e.g. the Hartree-Fock method. With this method, rather than solving the N

electron equation, we solve the equation for one electron within the potential

generated by the nuclei and the 𝑁−1 remaining electrons. This way we construct

an effective potential 𝑉eff, which has the same symmetry as the nuclei-electron

potential. The problem is rewritten as:

𝐻1𝜓(w1) = [𝑇𝑒1 +𝑉eff]𝜓(w1) = 𝜀𝑒1𝜓(w1). (5)

The electronic wave function can be factorized into a spatial component and a

spin component:
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𝜓(w1) = 𝜙(r1)𝜒(𝜎1). (6)

We can assume that the spin wave function 𝜒(𝜎1) is trivial, and only provides

a twofold degeneracy. We then focus on the spatial dependence of the single-

electron wave function:: 𝜓(w) = 𝜓(r).
If we take the periodicity of the crystalline structure into account, the nu-

clear attraction 𝑉𝑛𝑒 is seen as a periodic function by each electron and, as a

result, the effective potential is usually periodic with the same periodicity. Under

such conditions, the electronic wave functions take the form expressed in Bloch’s

theorem:

𝜓 𝑗 (r) = 𝑒𝑖k·r𝑢k, 𝑗 (r). (7)

Here the function 𝑢k(r) has the same periodicity as the effective potential, k is an

arbitrary wave vector, and 𝑗 is the band index. This factorization means that the

calculation of the periodic part of the electron eigenfunctions can be limited to a

primitive cell of the crystal: a Bravais translationR would leave the wave function

unchanged, apart from a constant phase term 𝑒𝑖k·R. Another simplification comes

from restricting the k points to a single primitive cell of the reciprocal lattice,

such as the first Brillouin zone. If we consider a k point outside of the first

Brillouin zone, we can always find a G vector of the reciprocal lattice such that

k’ = k+G is in the first Brillouin zone. Then we would have 𝜓 𝑗 (r) = 𝑒𝑖k·r𝑢k, 𝑗 (r) =
𝑒(𝑖k’−G)·r𝑢k, 𝑗 (r) = 𝑒𝑖k’·r𝑒−𝑖G·r𝑢k, 𝑗 (r), and the function 𝑢′

k′, 𝑗
(r) = 𝑒−𝑖G·r𝑢k, 𝑗 (r) is

lattice periodic, therefore 𝑒𝑖k
′·r𝑢′

k′, 𝑗
(r) is an equivalent Bloch function. We can

now rewrite the stationary Schrödinger equation:[︃
− ℏ2

2𝑚𝑒
∇2 +𝑉eff(r)

]︃
𝑒𝑖k·r𝑢k, 𝑗 (r) = 𝜀𝑒𝑖k·r𝑢k, 𝑗 (r). (8)

The equation can be transformed into an equation for the periodic function 𝑢k, 𝑗 (r)
as follows:

∇2𝑒𝑖k·r𝑢k, 𝑗 (r) = ∇ · [𝑒𝑖k·r∇𝑢k, 𝑗 (r) + 𝑖k𝑒𝑖k·r𝑢k, 𝑗 (r)]
= 𝑒𝑖k·r(∇ + 𝑖k)2𝑢k, 𝑗 (r)

by substituting and simplifying the common factor 𝑒𝑖k·r, we obtain:[︃
− ℏ2

2𝑚𝑒
(∇ + 𝑖k)2 +𝑉eff(r)

]︃
𝑢k, 𝑗 (r) = 𝜀k, 𝑗𝑢k, 𝑗 (r). (9)
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In conclusion, we have factorized the electron eigenfunctions in such a way that

reduces the problem to a single primitive cell in the real lattice. The problem

must be solved for each fixed k point in a given cell of the reciprocal lattice. The

electron eigenvalues 𝜀 ≡ 𝜀𝑘, 𝑗 are k-dependent and form continuous bands as k

varies within a reciprocal-lattice cell, e.g. the first Brillouin zone.

2.4 The tight-binding model

In the tight-binding method, we calculate the electronic band structure by con-

structing the Bloch functions through linear combinations of atomic orbitals. The

first assumption we make is that in the proximity of an atom within the crystal,

the electron wave functions nearly coincide with the atomic orbitals. In practice,

this means that in our calculations we only consider the electrons in the outer

valence orbitals, while the core shells are nearly unaffected by the presence of

other atoms. We follow the procedure shown in Ref. [3] and decompose the

single-electron Hamiltonian as

𝐻1 = 𝐻at + Δ𝑉 (r) (10)

where 𝐻at is the one atom Hamiltonian, and Δ𝑉 (r) is the potential generated

by all remaining ions, which produces the effective potential when added to the

potential of the atom. We can then form Bloch states through the following linear

combination:

𝜓k(r) =
∑︁
R

𝑒𝑖k·R𝜙(r −R), (11)

where 𝜙 is a linear combination of atomic wave functions:

𝜙(r) =
∑︁
𝑛

𝑏𝑛𝜑𝑛 (r). (12)

It is easy to prove that 𝜓k satisfies Bloch’s theorem (7):
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𝜓k(r +R) =
∑︁
R′
𝑒𝑖k·R

′
𝜙(r +R −R′)

= 𝑒𝑖k·R
[︄∑︁
R′
𝑒𝑖k·(R

′−R)𝜙(r − (R′ −R))
]︄

= 𝑒𝑖k·R
[︄∑︁
R′
𝑒𝑖k·(R

′−R)𝜙(r − 𝑅)
]︄

= 𝑒𝑖k·R𝜓k(r).

If we multiply the crystal Schrödinger equation

[𝐻at + Δ𝑉 (r)]𝜓k = 𝜀k𝜓k(r) (13)

by the atomic wave function 𝜑∗𝑚 (r) and integrate over r, we obtain∫
𝜑∗𝑚 (r) [𝐻at + Δ𝑉 (r)]𝜓k(r)𝑑r = 𝜀k

∫
𝜑∗𝑚 (r)𝜓k(r)𝑑r. (14)

Through equations (11) and (12), we reach the secular equation:∑︁
𝑛

𝐻k,𝑚𝑛𝑏𝑛 = 𝜀k

∑︁
𝑛

𝑆k,𝑚𝑛𝑏k,𝑛 (15)

where:

𝐻k,𝑚𝑛 =
∑︁
T𝑖

𝑒𝑖k·(T𝑖−T 𝑗 )
∫

𝜑∗𝑚 (r −T 𝑗 ) [𝐻at + Δ𝑉 (r)]𝜑𝑛 (r −T𝑖)𝑑r (16)

𝑆k,𝑚𝑛 =
∑︁
T𝑖

𝑒𝑖k·(T𝑖−T 𝑗 )
∫

𝜑∗𝑚 (r −T 𝑗 )𝜑𝑛 (r −T𝑖)𝑑r (17)

where T𝑖 and T 𝑗 are the positions of the 𝑖-th and 𝑗-th atoms within the crystal,

which can be expressed as the sum of a Bravais translationR𝑖/ 𝑗 and the position of

the atom within the cell d𝑖/ 𝑗 : T𝑖/ 𝑗 = R𝑖/ 𝑗 +d𝑖/ 𝑗 . We will refer to 𝐻k,𝑚𝑛 and 𝑆k,𝑚𝑛,

respectively, as the Hamiltonian matrix and the overlap matrix. Both matrices,

and the resulting generalized secular problem (15), are parametrically dependent

on the wave vector k. The solution of the secular equation (15) provides the band

structure of the crystal.

We follow Ref. [2] to calculate the integrals in equations 16 and 17. The basic

geometric element is the vector T𝑖 − T 𝑗 joining the two interacting atoms. By

writing the atomic basis 𝜑 functions as linear combinations of functions quantized
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with respect to the joining vector, we obtain the appropriate overlap matrix

elementsi. For example a p orbital can be expressed as a linear combination of

a 𝑝𝜎 and a 𝑝𝜋± function. Assume that 𝜑𝑚 is a 𝑝𝑥 function and 𝜑𝑛 is a 𝑑𝑥𝑦

function: we can symbolize the integral as 𝐸𝑥,𝑥𝑦. This function can be written in

terms of two distance-dependent integrals: one between a 𝑝𝜎 orbital on the first

atom and a 𝑑𝜎 orbital on the second, which we name (𝑝𝑑𝜎); and one between

a 𝑝𝜋 orbital on the first and a 𝑑𝜋 on the second, which we name (𝑝𝑑𝜋). All

other components vanish due to the orthogonality of the atomic orbitals. By

carrying out the calculations we obtain 𝐸𝑥,𝑥𝑦 =
√
3𝑙2𝑚(𝑝𝑑𝜎) + 𝑚(1 − 2𝑙2) (𝑝𝑑𝜋)

where 𝑙, 𝑚, 𝑛 are the direction cosines of the R𝑖 − R 𝑗 vector. Similar results

can be obtained for other integrals, as reported in table 1 of Ref. [2]. The

same procedure applies to both the energy and overlap integrals, although the

distance-dependent integrals obviously have different values. The calculation of

the distance-dependent integrals is detailed in the next chapter.

3 Implementation

The calculation of the electronic bands and total energy involves 5 steps, which

are carried out through a C++ code:

1. the construction of the crystal through the input of a primitive cell and

basis vectors;

2. the evaluation of the distances involved in the specific lattice structure

considered, and correspondingly of the resulting two-center Slater-Koster

energy integrals to construct the tight-binding matrices: for this step we

make use of the parameterization provided by Ref. [1], which will be further

explained in the next section;

3. the construction of a uniform grid of k points in a primitive cell of the

reciprocal lattice;

4. the resolution of the secular equation (15), at each point of the k-space grid:

this diagonalization is carried out through the Eigen library [4];

5. the calculation of the chemical potential to determine which band states

are full and which are empty, which then allows us to determine the total

energy of the crystal.
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Figure 1: Tight-binding Hamiltonian Slater-Koster ampli-

tudes as a function of the Ti-Ti distance T𝑖 −T 𝑗 .

3.1 The parameterization

Following Ref. [2] we can simplify the energy and overlap matrix elements from

equations (16), (17). Thus the matrix elements take the following form:

𝐻k,𝑚𝑛 =
∑︁

T𝑖
𝑒𝑖k·(T𝑖−T 𝑗 )𝐸𝑚𝑛 (T𝑖 −T 𝑗 ) (18)

𝑆k,𝑚𝑛 =
∑︁

T𝑖
𝑒𝑖k·(T𝑖−T 𝑗 )𝑆𝑚𝑛 (T𝑖 −T 𝑗 ) (19)

where 𝐸𝑚𝑛 and 𝑆𝑚𝑛 are respectively the energy and overlap Slater-Koster integrals

reported in table 1 of Ref. [2]. We can also note that for T𝑖 − T 𝑗 = 0 the non-

diagonal terms vanish, therefore:

𝐻k,𝑚𝑛 = 𝛿𝑚𝑛𝜀𝑚 +
∑︁

T𝑖≠T 𝑗

𝑒𝑖k·(T𝑖−T 𝑗 )𝐸𝑚𝑛 (T𝑖 −T 𝑗 ) (20)

𝑆k,𝑚𝑛 = 𝛿𝑚𝑛 +
∑︁

T𝑖≠T 𝑗

𝑒𝑖k·(T𝑖−T 𝑗 )𝑆𝑚𝑛 (T𝑖 −T 𝑗 ). (21)

In Ref. [1] the Slater-Koster integrals are parameterized through three func-

tions: hopping and overlap functions and onsite energies. A key observation is
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Figure 2: Tight-binding overlaps as a function of the Ti-Ti

distance T𝑖 −T 𝑗 .

that this model involves no explicit classic pair potential in the total energy, but

it incorporates the effective potential into the 1-electron Hamiltonian through

density-dependent onsite energies:

𝜀𝑙,𝑖 = 𝑎𝑙 + 𝑏𝑙𝜌2/3𝑖
+ 𝑐𝑙𝜌4/3𝑖

+ 𝑑𝑙𝜌2𝑖 , (22)

where

𝜌𝑖 =
∑︁
𝑗≠𝑖

exp(−𝜆2𝑟𝑖 𝑗 ) 𝑓𝑐 (𝑟𝑖 𝑗 ) (23)

is the local atomic density, 𝑖 and 𝑗 are atomic indices, 𝑙 is the angular quantum

number of the orbital, and 𝑓𝑐 (𝑟) is a smooth cut-off function

𝑓𝑐 (𝑟) =
[︃
1 + exp

(︃
𝑟 − 𝑅0
𝑙0

)︃]︃−1
. (24)

The intersite and overlap functions are as follows:

𝑃𝑙𝑙′𝑚 (𝑟) = (𝑒𝑙𝑙′𝑚 + 𝑓𝑙𝑙′𝑚𝑟) exp(−𝑔2𝑙𝑙′𝑚𝑟) 𝑓𝑐 (𝑟). (25)

The cut-off function 𝑓𝑐 (𝑟) is the same for every parameter.
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Crystal structures Primitive vectors Basis

sc

a1 = 𝑎(1, 0, 0)
a2 = 𝑎(0, 1, 0)
a3 = 𝑎(0, 0, 1)

d1 = (0, 0, 0)

bcc

a1 =
𝑎
2 (1, 1,−1)

a2 =
𝑎
2 (1,−1, 1)

a3 =
𝑎
2 (−1, 1, 1)

d1 = (0, 0, 0)

fcc

a1 =
𝑎
2 (1, 1, 0)

a2 =
𝑎
2 (1, 0, 1)

a3 =
𝑎
2 (0, 1, 1)

d1 = (0, 0, 0)

𝛼-hcp

a1 = 𝑎(1, 0, 0)
a2 = 𝑎( 12 ,

√
3
2 , 0)

a3 = 𝑐(0, 0, 1)

d1 = (0, 0, 0)
d2 = ( 12𝑎,

√
3
6 𝑎,

𝑐
2 )

Table 1: Primitive vectors and basis for different crystal

structures.

The adopted parameterization includes the 4s, 4p and 3d orbitals of tita-

nium. As a result it requires 3 onsite energy functions, labeled by the angular

quantum number 𝑙; 10 hopping functions and 10 overlap functions, labeled by

the kind of interaction: 𝑠𝑠𝜎, 𝑠𝑝𝜎, 𝑝𝑝𝜎, 𝑝𝑝𝜋, 𝑠𝑑𝜎, 𝑝𝑑𝜎, 𝑝𝑑𝜋, 𝑑𝑑𝜎, 𝑑𝑑𝜋, 𝑑𝑑𝛿.

Overall this model relies on 60 parameters for the hopping and overlap functions,

plus 15 parameters for the onsite energies. Figures 1 and 2 show the hopping and

overlap functions as a function of the interatomic distance.

3.2 Bulk calculations

The adopted tight-binding model focuses on titanium crystals within the bulk

approximation, i.e. ideal infinite crystalline structures. For this reason we write

a C++ code that takes as input the basis and primitive vectors for selected

periodic structures and the lattice spacing 𝑎, then it constructs the crystal by

calculating the positions of all atoms within a pre-defined cut-off distance of the

central cell. Following Ref. [1], we set the cut-off at 8 Å. The code then proceeds

to calculate the onsite energies.

We use a regularly spaced k point mesh within the reciprocal primitive cell,

as explained in Ref. [5]:

k =
𝑛1

𝑁
b1 +

𝑛2

𝑁
b2 +

𝑛3

𝑁
b3, (26)
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where 𝑛1, 𝑛2, 𝑛3 are integers, 0 ≤ 𝑛1, 𝑛2, 𝑛3 < 𝑁. We adopt 𝑁 = 15that we

verified leads to a sufficiently fine mesh to produce well-converged results. For

each k point, the code cycles through all the atoms within the cutoff distance and

calculates the intersite and overlap functions and constructs the matrices through

equations (20) and (21). Next, using the GeneralizedSelfAdjointEigenSolver

method provided by the Eigen library [4], it solves the generalized secular equation

(15) and determines the energy levels of that k point. At the end of the k loop,

the code sorts all energy levels (all bands at all k points) in ascending order: this

is useful for the evaluation of the chemical potential.

Based on the obtained band energies, the code proceeds to evaluate the total

energy. For this purpose, the code must first evaluate the number of electrons in

the portion of the crystal we are considering: 𝑁el = 𝑁
3 × 𝑁𝑏𝑎𝑠𝑖𝑠 × 4, where 𝑁𝑏𝑎𝑠𝑖𝑠

is the number of atoms in the primitive cell, and 4 is the number of electrons

per titanium atom in the 4s, 4p and 3d orbitals included in this model: 2 3d

electrons, and 2 4s electrons. To calculate the total energy of the crystal we fill

the lowest 𝑁el
2 energy levels with 2 electrons each. The total energy is obtained

by adding up all sorted band energies of the filled states:

𝐸𝑡𝑜𝑡 = 2
∑︁

𝛼≤𝑁el/2
𝜀𝛼 . (27)

We calculate the chemical potential as the average of the energies of the

Highest Occupied Molecular Orbital (HOMO), i.e. level number 𝑁el
2 in the sorted

list, and the Lowest Unoccupied Molecular Orbital (LUMO), i.e. the successive

level number 𝑁el
2 + 1 in the sorted list:

𝜇 =
𝜀LUMO + 𝜀HOMO

2
. (28)

The entire calculation is then repeated after varying the lattice spacing (and,

proportionally, the basis vectors too): this allows us to calculate the total energy

as a function of the volume of the cell, and therefore to determine the stablest

structure of titanium. All calculations are done at the temperature 𝑇 = 0 K.

We repeat this procedure for the following crystalline structures: simple cu-

bic (sc), body-centered cubic (bcc), face-centered cubic (fcc), 𝛼 hexagonal close-

packed (𝛼-hcp). Table 1 reports their basis and primitive vectors. Since in the

hcp structure the entire calculation depends on 2 parameters, namely 𝑐 and 𝑎, or

equivalently on 𝑎 and the 𝑐
𝑎
ratio, the determination of the most stable structure

cannot rely on a simple 1-parameter optimization as for the cubic structures.

Therefore, we implement a simplex minimization method [6] to determine which

values of 𝑎 and 𝑐 return the minimum energy. We then calculate the band struc-
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Figure 3: First Brillouin zone of the 𝛼-hcp structure with

high symmetry points highlighted. In our computation of the

electronic bands, we follow the path Γ−𝑀−𝐾−Γ−𝐴−𝐿−𝐻−𝐴.

ture for the equilibrium structure obtained in this way along a path in the first

Brillouin zone, illustrated for the 𝛼-hcp example in Figure 3.

We also evaluate the bulk modulus for the equilibrium structure. The bulk

modulus is defined as:

𝐵 = −𝑉 𝜕𝑃
𝜕𝑉

= 𝑉
𝜕2𝐹

𝜕𝑉2
, (29)

where 𝑉 is the volume per atom, 𝑃 is the pressure, and 𝐹 is the Helmholtz free

energy per atom, which, at 𝑇 = 0 K is equal to the total energy per atom 𝐸at,

therefore:

𝐵 = 𝑉
𝜕2𝐸at

𝜕𝑉2
. (30)

To evaluate the bulk modulus we fit our data near the equilibrium point to a

second-degree polynomial 𝛼(𝑥− 𝛽)2+𝛾, the bulk modulus is obtained as 𝐵 = 2𝛼𝛽.

3.3 Molecules and clusters

We can also run tight-binding calculations for molecules and finite clusters of

titanium, with a few minor changes to the procedure. For isolated molecules,

there is no need of a Bravais lattice. The code takes as input the positions of the

13



Atomic shell Energy (eV)

4s −3.272
3d 0.3632

4p 4.974

Table 2: Energy levels for the single titanium atom. The

resulting total energy is 𝐸atom = −5.8176 eV.

atoms, while the dimensions of the cell are set to be much greater than the cut-

off distance, thus limiting the computation to just one cell. The lack of periodic

boundary conditions also reduces the k point mesh to a single point (𝑁 = 1),

making the computation of the energy levels generally faster. We attempted these

calculations for the titanium dimer and for an icosahedral cluster consisting of

13 atoms (12 at the vertices plus 1 at the center). In order to determine the

equilibrium positions of the atoms, we adopt a simplex minimization.

4 Results

In this section we report the results of our tight-binding simulations.

4.1 The titanium atom

We need a single titanium atom to provide the reference energy of the unbound

atomized state. As previously mentioned, the model considers the 4s, 3d and 4p

shells: as expected, we find three distinct energy levels, listed in table 2. In its

ground state, the titanium atom has two electrons in the 4s shell plus 2 electrons

in the 3d shell, resulting in a total energy 𝐸atom = −5.8176 eV.

4.2 The Ti2 dimer

Figure 4 reports the computed total energy per atom for the titanium dimer. The

results appear of little physical significance for at least two reasons: (i) at distance

𝑟 > 2.9 Å this adiabatic energy is a decreasing function of distance, indicating

an unphysical repulsive character; (ii) attraction develops at smaller distance,

but at distances smaller than 2 Å jump discontinuities appear, indicating serious

problems with the model. At small distance, the dimer energy keeps decreasing,

instead of becoming positive, indicating that the interaction is attractive, rather

than repulsive as expected due to the overlap of the core shells. At large distances

14
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Figure 4: Energy per atom of the titanium dimer as a func-

tion of the interatomic distance. The dashed line represents

the reference energy of an isolated atom. The jump discon-

tinuities at small distance and the repulsive regime at large

distance are both unphysical.

the total energy is greater than the energy of an isolated atom, indicated by the

dashed line in 4, suggesting that if titanium was to follow this model, the Ti2
dimer would decompose spontaneously into single atoms. The energy levels,

reported in Figure 5 display the same discontinuities at short distances, although

at long distances they behave as expected, converging into the 4s, 3d and 4p

levels. The simplex method yielded no meaningful results, as the total energy

has no minimum.

The non-physical behavior of the model at short distances is easily under-

stood by examining the overlap matrix. For the secular equation (15) to be

solvable, the overlap matrix 𝑆k must be positive definite, otherwise the diago-

nalization fails. Figure 6 reports the eigenvalues of the overlap matrix 𝑆 for the

dimer: the lowest eigenvalue becomes negative at interatomic distances lower than

approximately 2Å. As a result, the 𝑆 matrix stops being definite positive, and

thus all generalized diagonalizations of the TB equation (15) become meaningless

under 2Å.
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Figure 5: Molecular energy levels of the titanium dimer as

a function of the interatomic distance. At short distances

they show the same discontinuous behavior as the total en-

ergy, while at large distances they converge into the 4s, 3d

and 4p atomic energies. The dashed black line represents the

chemical potential.

4.3 Bulk structures

We must first check the convergence of the total energy as a function of the

k point mesh used. Figure 7 shows that, for a k point mesh consisting of at

least 15 × 15 × 15 points, the discrepancy between the total energy and the value

obtained with the finest mesh we could consider within reasonable execution

times is smaller than 1 meV. Total-energy minimization for the 𝛼-hcp structure

is carried out by means of the simplex method. The equilibrium structure is

found for 𝑐
𝑎
= 1.618 and 𝑎 = 2.941. Figure 8 reports the energy-volume curves

for the 𝛼-hcp structure for different values of 𝑐
𝑎
. The results sketched in Figure

9 show that the 𝛼-hcp structure is the stablest one for a titanium crystal. The

results we obtained are slightly different from those of Ref. [1]. This is likely due

to a difference in the k point mesh: we cannot be sure because in Ref. [1] no

clear indication is provided of what k-point mesh is adopted. Regardless of these

details, the best structure shows a cohesive energy of just 0.3324 eV per atom, a
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Figure 6: The eigenvalues of the overlap matrix 𝑆 for the tita-

nium dimer as a function of the interatomic distance. Around

2Å the lowest eigenvalue becomes negative, thus the matrix

is no longer positive definite and the secular equation (15)

cannot be solved.

stark variance from the accepted experimental value of 4.85 eV per atom (taken

from Ref. [7]). The value obtained for the lattice constant 𝑎 at the equilibrium

structure is in good agreement with the experimental value of 𝑎 = 2.95, while the

value of 𝑐
𝑎
is somewhat larger than the experimental value of 𝑐

𝑎
= 1.59. The value

we obtained for the bulk modulus is 𝐵 = 115.8 GPa, not far from the experimental

value of 110 GPa (Ref. [8]).

Figure 10 shows the computed electronic bands of the titanium 𝛼-hcp crystal

in its equilibrium geometry. As we can observe, the chemical potential crosses

multiple bands: this is expected as titanium is a conductor. For comparison, in

Fig. 11 we report the electronic bands computed with the FLAPW method in

Ref. [9]. As we can observe, the graphs are qualitatively similar, except for the

𝑀 − 𝐾 segment, where the bands exhibit different behaviors.

4.4 The icosahedral cluster

Our calculations for the icosahedral cluster, summarized in Figure 12, exhibit

issues similar as those of the diatomic molecule: the total energy is discontinuous

at short distances; the cluster is unstable, as it has higher energy than 13 isolated
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Figure 7: Total energy per atom of a titanium 𝛼-hcp crys-

tal as a function of the number of k points used in the TB

calculation. The total energy is computed at the equilibrium

structure 𝑎 = 2.941 and 𝑐
𝑎
= 1.618. The horizontal line repre-

sents the total energy obtained for the largest mesh computed

(𝑁 = 21).

atoms, and the interaction is repulsive at large distances.

5 Discussion and conclusions

In summary, we implemented a code that calculates the total energy and band

structure for arbitrary titanium crystals and molecules within a published tight-

binding scheme [1]. We verified the results reported in Ref. [1] and obtained

compatible results for the equilibrium structures. The most stable structure of

this tight-binding model is the 𝛼-hcp crystal with 𝑐
𝑎
= 1.618 and 𝑎 = 2.941, not

far off the experimental structure. For the equilibrium structure we also report

the energy bands, of course indicating metallic properties. Moreover, the crystal

cohesive energy is dramatically smaller than expected based on experiment.

We applied the same method to calculate the bonding energy of titanium

molecules and obtained more unphysical results. All these discussed problems
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Figure 10: Titanium band structure for the 𝛼-hcp structure

with 𝑐
𝑎
= 1.618 and a=2.941. The calculation was made along

the path shown in Figure 3. We evaluated the chemical po-

tential at 𝑇 = 0 K to be 𝜇 = 0.170 eV, represented by the red

dashed line.

are to be attributed to the parameterization adopted. The most likely rationale

is that this parameterization is based on a fitting database that only contains

calculations with crystalline structures involving Ti-Ti distances greater than

2.350Å. As a results it is no surprise that this model fails for molecules, especially

at small distances. In practice, the TB model of Ref. [1] proves to be a radically

non-transferable model.
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Figure 11: Titanium band structure computed through the

FLAPW method for the 𝛼-hcp structure at 𝑐
𝑎
= 1.584 and

𝑎 = 2.957. This graph was taken from Ref. [9].
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Figure 12: Total energy per atom of a titanium icosahedral

cluster (13 atoms: 1 in the middle and 12 at the vertices of

the regular icosahedron) as a function of the distance from

the vertices to the center.
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